Illumination – Supported by vehicle structure – Adjustable lamp or lamp support
Reexamination Certificate
2001-08-28
2004-08-10
Sember, Thomas M. (Department: 2875)
Illumination
Supported by vehicle structure
Adjustable lamp or lamp support
C362S529000, C362S531000, C362S532000
Reexamination Certificate
active
06773153
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to headlamp adjusters, and more particularly to a compact headlamp adjuster that can incorporate a clutching feature to prevent over-extension or over-retraction of the ball stud.
BACKGROUND OF THE INVENTION
There is a trend in the automobile industry to use internally adjustable reflector headlamps. Internally adjustable reflector headlamps include a reflector and bulb socket assembly enclosed within a sealed headlamp housing and lens. The orientation of the reflector within the housing is adjustable to control the direction of the light beam cast by the headlamp. Typically, the adjustable reflector is supported by three ball studs that extend from the rear of the headlamp housing and fit within sockets located on the back of the reflector. A middle ball stud is secured directly to the headlamp housing to provide a fixed pivot point for the reflector. The other two ball studs are connected to adjuster mechanisms secured to the rear of the headlamp housing. By operating the adjuster mechanisms, the ball studs can be extended and retracted to control the horizontal and vertical orientation of the reflector. Examples of such adjusters include those disclosed in U.S. Pat. Nos. 5,707,133 and 5,214,971 to Burton et al., U.S. Pat. No. 5,483,426 to Lewis et al., U.S. Pat. No. 4,796,494 to Eckenrode et al., and U.S. Pat. No. 4,703,399 to Van Duyn et al.
United States National Highway Traffic Safety Administration (“NHTSA”) standards require that horizontal adjuster mechanisms used in connection with internally adjustable reflector headlamps must be either non-readjustable after the proper aim has been achieved or be equipped with a non-recalibratable vehicle headlamp aiming device (“VHAD”) which is zeroed after the proper aim has been achieved. As such, vehicle manufacturers must either aim the lamps and provide a mechanism to prevent future readjustment, or aim the lamps and provide a non-recalibratable VHAD which is properly zeroed. One method of providing a non-recalibratable VHAD is disclosed in U.S. Pat. No. 6,042,254 to Burton (the inventor of the present invention), the disclosure of which is incorporated herein by reference. Several methods of providing a non-readjustable headlamp adjuster are disclosed in U.S. Pat. No. 6,050,712 to Burton, the disclosure of which is incorporated herein by reference.
One problem experienced when using existing adjuster devices, regardless of whether they are in compliance with NHTSA standards, is that they suffer one or a combination of the followings draw backs: excess cost; failure due to a lack of strength; failure due to corrosion; an unreliable air tight seal between the ball stud and adjuster housing allowing the entrance of contaminants into the headlamp; and size not being compact enough for some of the new aerodynamic vehicle designs in which space in the front of the vehicle is at a premium. When all or most of the adjuster parts are manufactured from metal, strength is more easily achieved but failure due to corrosion can frequently result and plating must be used in an effort to resist corrosion. Substantial corrosion in the threaded region is most detrimental because it can cause the threads to jam and become inoperative. Plating, while somewhat helpful, provides only limited resistance to corrosion and adds a significant cost. When all or most of the adjuster parts are manufactured from plastic, inadequate strength or stiffness can be an issue when trying to provide a design with a compact size. For instance, plastic gears using conventional gear tooth designs can easily strip, especially if the gears are inadequately supported within the adjuster housing. This stripping most easily occurs when the device is “over adjusted” beyond the designed travel capabilities of the adjuster mechanism. Conventional gear tooth designs use equal tooth thickness on both gears which does not maximize stripping resistance if the material strength of one gear is greater than the other. Further, many existing adjuster housing designs lack adequate gear support to prevent the gears from partially or fully separating under high torque conditions. When the gears separate under torque the gear teeth are not fully engaged and stripping resistance is reduced. Accordingly, a need exists for an adjuster that is in accordance with NHTSA standards and is low cost, compact in design, prevents failure due to corrosion, has a reliable air-tight seal to the headlamp, and resists stripping and failure of internal components.
SUMMARY OF THE INVENTION
The present invention relates to a low cost and compact adjuster that is primarily constructed from plastics, non-metal materials, or composites such as glass-filled nylon, and can be used in connection with a non-recalibratable VHAD or can be adapted to be non-readjustable after factory adjustment. As described in more detail in the detailed description below, and shown in the accompanying drawings, the adjuster components are constructed either entirely or from a high percentage of plastic or composite materials. The adjuster has several primary components, namely an input shaft, a non-recalibratable VHAD (if desired), a housing, a gear, and a ball stud. The housing journals the gear which in turn engages a bevel gear on the end of the input shaft. The ball stud has a toothed portion on one end that engages an internal ribbed surface of the gear. When the input shaft is rotated, the gear turns causing the ball stud to rotate and move axially.
The adjuster is not subject to stripping or over-adjustment when it includes a clutching mechanism. When the ball stud reaches the end of the desired travel path, the toothed portion no longer engages the ribbed surface of the gear. At this point, the gear continues to rotate but slips in relation to the ball stud. The ball stud can be made to move in an opposite linear direction by reversing the rotation direction of the input shaft. When this is done, tangs inside the gear catch and engage the toothed portion causing it to move in the reverse direction. The adjuster housing and ball stud arrangement act to rigidly support the bevel gears in relation to each other to maintain full tooth engagement even under high torque conditions.
The adjuster is sealed to prevent moisture from entering into the headlamp assembly. The seal can be obtained with a gasket and O-ring that connect to the housing, or with a molded member that is injection molded directly onto the housing.
In sum, the present invention represents a significant improvement over the prior art in many ways. The adjuster of the present invention is compact and lightweight, is efficiently and economically handled in the headlamp or vehicle assembly process, is in conformance with NHTSA standards, and overcomes the disadvantages of the prior art. While the present invention is particularly useful in headlamp assemblies, other applications are possible and references to use with headlamp assemblies should not be deemed to limit the application of the present invention. In particular, the present invention may be advantageously adapted for use where similar performance capabilities and characteristics are desired. These and other objects and advantages of the present invention will become apparent from review of the detailed description, claims, and accompanying drawings.
REFERENCES:
patent: 4674018 (1987-06-01), Ryder et al.
patent: 4703399 (1987-10-01), Van Duyne et al.
patent: 4737891 (1988-04-01), Burton
patent: 4796494 (1989-01-01), Eckenrode et al.
patent: 4930367 (1990-06-01), Nagasawa
patent: 4939945 (1990-07-01), Ryder et al.
patent: 5079676 (1992-01-01), Lisak
patent: 5163746 (1992-11-01), Lisak
patent: 5214971 (1993-06-01), Burton et al.
patent: 5285360 (1994-02-01), Kanner
patent: 5309780 (1994-05-01), Schmitt
patent: 5355287 (1994-10-01), Denley
patent: 5483426 (1996-01-01), Lewis et al.
patent: 5707133 (1998-01-01), Burton
patent: 5775795 (1998-07-01), Christian et al.
patent: 5779343 (1998-07-01), Denley
patent: 5897202 (1999-04-01), Denley
patent: 601
Burton Technologies LLC
Gilpin Brian G.
Godfrey & Kahn S.C.
Sember Thomas M.
LandOfFree
Adjuster for headlamp assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adjuster for headlamp assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adjuster for headlamp assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3310794