Fluid handling – With lock or seal
Reexamination Certificate
2000-03-13
2001-07-10
Lee, Kevin (Department: 3753)
Fluid handling
With lock or seal
C251S090000, C070S177000
Reexamination Certificate
active
06257273
ABSTRACT:
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to knife gate valves for controlling material flow along a path. More particularly, the present invention concerns an adjustable lockout device configured to securely lock the valve in a desired condition, and an improved valve design for use with the adjustable lockout device.
2. Discussion of Prior Art
Those ordinarily skilled in the art will appreciate that it is often necessary to lock a flow control valve in a select condition. For example, actuation of the valve is undesirable when an operator is maintaining or otherwise working on the valve. It is particularly important to lock out a remotely controlled valve, wherein valve actuation might cause damage to the valve or injury to an unsuspecting worker while the valve is being maintained. It is also common to lock a flow control valve in a closed position during maintenance of the flow line downstream from the valve. That is to say, it is often undesirable to have material flow through the line during line maintenance, and the valve may consequently be locked in a closed position to prevent material flow beyond the valve so that the portion of the line downstream from the valve can be worked on without material flowing therethrough.
However, numerous problems are associated with conventional valve lockout designs. For example, the valve lockout device may fail to securely lock the valve against actuation, which is especially problematic when a powerful actuator is utilized to open and close the valve. A number of lockout devices are not tamperproof and consequently may be removed by unauthorized personnel or by workers having no knowledge that the valve should remain locked out. In addition, a number of conventional valves are not designed to be locked out, and the valve must consequently be retrofitted with structure for selectively locking out the valve. The lockout devices utilized with such valves often do not effectively prevent valve actuation and are difficult to use.
One particular valve design (a so-called “gate valve”) includes a casing connected to the flow line, a valve plate shiftable relative to the casing between open and closed positions, an actuator including a linearly shiftable control member connected to the valve plate for effecting shifting of the plate, and a pair of yokes rigidly interconnecting the actuator and casing. Those ordinarily skilled in the art will appreciate that conventional gate valve designs are particularly problematic. It is believed that no gate valve has heretofore been originally designed to include a lock out device, thereby requiring the valve to be retrofitted when a lockout device is desired. Such a retrofit typically includes a rigid, elongated, metal bar and a pair of spaced apart, metal blocks fixed to one of the yokes (e.g., by welding). Each of the blocks is positioned along the yoke at a location that allows the bar to be disposed between the block and the control member to prevent shifting of the control member relative to the yoke. As is customary, the bar and blocks are designed to lock the valve in the open and closed conditions.
Beyond requiring the valve to be retrofitted, this traditional design presents numerous additional problems. For example, a retrofitted valve is often incapable of being locked in a completely open and/or closed position. It is virtually impossible to precisely retrofit the valve, and consequently, there is often “slop” in the components used to lockout device. This will sometimes require removal and reinstallation of the retrofit components (e.g., when the bar is too large to be wedged between one of the blocks and the control member) or, in the alternative, slight shifting of the control member out of the open or closed conditions before the bar engages both the member and block in a manner to prevent further movement of the member. In the latter case, use of the lockout device may require a worker to hold the bar between one of the blocks and the control member as the member is shifted slightly from the selected lock out condition (e.g., open or closed). In addition, if the control member is subsequently shifted toward the select condition, the bar is likely to sufficiently disengage the control member and/or corresponding block and fall from its operating orientation. Furthermore, material will likely be permitted to flow through the valve if the valve plate is required to be shifted slightly out of the closed position. It has also been determined that most valves have a seat that will wear, and the location of the valve plate in the closed position will consequently change over time. Thus, even if the valve assembly were to be precisely retrofitted, the lockout device would eventually be incapable of locking the valve in the completely closed condition. This problem would be experienced even if the valve were to be precisely designed for use with the bar-type lockout device.
OBJECTS AND SUMMARY OF THE INVENTION
Responsive to these and other problems, an important object of the present invention is to provide a valve assembly that can be prevented from being actuated out of a select condition or conditions. It is also an important object of the present invention to provide a lockout device that securely locks a valve in a select condition or conditions. Another important object of the present invention is to provide a valve that is specifically designed and manufactured for use with a lockout device. In addition, an important object of the present invention is to provide a lockout device that is durable, inexpensive, and easy to use. Yet another important object of the present invention is to provide a lockout device configured to securely lock the valve against actuation regardless of manufacturing inaccuracies or other variances, such as those caused by wear. Furthermore, an important object of the present invention is to provide a tamperproof lockout device that prevents unauthorized removal. Additionally, an important object of the present invention is to provide a lockout device that is operable to alternatively secure the valve in the completely open and closed conditions. Yet another important object of the present invention is to provide a lockout device that is particularly effective when used with gate valves and to provide an improved gate valve design for use with lockout devices.
In accordance with these and other objects evident from the following description of the preferred embodiment, the present invention concerns a lockout device for use with a valve having a pair of spaced apart, generally opposed abutment surfaces, with at least one of the abutment surfaces being shiftable relative to the other in such a manner that the spacing between the surfaces decreases when the valve is actuated. The lockout device is adjustable and includes a pair of generally oppositely facing engagement faces positionable between the abutment surfaces. The distance between the engagement faces is selectively adjustable so that the user may vary the effective length of the lockout device. This adjustability ensures positive interengagement between the abutment surfaces and engagement faces to prevent shifting of the at least one abutment surface toward the other abutment surface, and thereby prevent actuation of the valve. In this respect, the lockout device may be used to securely lock a valve in the complete open or closed condition, regardless of manufacturing inaccuracies or other variances, simply by adjusting the device so that the engagement faces positively engage the abutment surfaces when the valve is in the open or closed conditions.
The invention also concerns an improved gate valve design, wherein at least one yoke is provided for interconnecting the actuator and casing. The yoke has spaced apart first and second projections that extend generally toward the control member. The projections cooperate with the control member to present respective first and second pairs of spaced
Lee Kevin
Pepper Hamilton LLP
SPX Corporation
LandOfFree
Adjustable lockout device for knife gate valves does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adjustable lockout device for knife gate valves, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adjustable lockout device for knife gate valves will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2474243