Television – Camera – system and detail – Optics
Reexamination Certificate
1998-03-04
2001-05-01
Garber, Wendy R. (Department: 2612)
Television
Camera, system and detail
Optics
C348S036000, C348S373000
Reexamination Certificate
active
06226035
ABSTRACT:
FIELD OF THE INVENTION
This invention generally relates to optics and cameras. The invention relates more specifically to optical systems for obtaining both wide and narrow fields of view of an area of interest.
BACKGROUND OF THE INVENTION
In the security and surveillance field, it is common practice to monitor rooms or other areas of interest with pan-tilt-zoom (“PTZ”) cameras. Generally a PTZ camera is mounted in a transparent dome above or on the ceiling of the area of interest. The camera usually is a closed-circuit television camera. The camera is controlled remotely or automatically in order to view regions of interest within the room.
While such cameras can view any region, area of interest, or target, they have a relatively narrow field of view, and cannot see all regions at once. To view a different region of interest, the camera is commanded to pan, tilt, and/or zoom as necessary to bring the new region of interest into view. The process of panning, tilting, and/or zooming to the new region of interest or target takes time, and when the camera is viewing the new region or target, it can no longer see the original region. This limits the effectiveness of such cameras, since activities can only be monitored, recorded or tracked in one area at a time. Unmonitored areas are subject to unmonitored intrusions.
Omnidirectional imaging systems have been developed which permit simultaneous viewing and image capture of an entire room. These systems employ an image sensor that is mounted to receive light rays reflected from a wide-angle reflector, such as a parabolic mirror, in order to capture an omnidirectional, often hemispherical image. Embodiments of omnidirectional imaging systems are described in U.S. patent application Ser. No. 08/644,903, entitled “Omnidirectional Imaging Apparatus,” filed May 10, 1996.
One significant drawback of such omnidirectional imaging systems is that they provide only a wide-angle view of the area of interest. Because of the large viewing angle used to provide the wide-angle view, the resulting image has limited resolution. For example, when a video camera is used to capture a video image of a large room using a wide-angle view, a relatively small number of pixels of the video display are used to display each region of the room. Consequently, it is hard to make out details of the area of interest or to locate small objects. Further, the camera is fixed with respect to the wide angle optical system. As a result, a video image generated from the image sensor's signal shows the room or area of interest only from the viewpoint of the wide-angle reflector, and the views of the room have relatively low resolution.
Omnidirectional cameras also have been developed using fisheye lenses to capture wide, panoramic images.
However, the resolution of the images produced by all the above-described systems is limited by the fact that the field of view is projected onto a sensor which is typically used to generate an image for a much narrower field of view. For example, a conventional sensor might produce an image on a computer display screen having 640×480 pixels. Similar levels of resolution are supported by broadcast standards such as NTSC and S-video. Sensors with higher resolution are unusual and are very expensive; one reason is that it is difficult to capture and transmit the large amount of image data involved in real time. Hence, the number of pixels of the sensor that is available for any particular region in the image is relatively small, especially for omnidirectional systems with very wide fields of view.
Another approach to wide field of view imaging, typically used for still frame photography, is the rotating panoramic camera, as exemplified by the Kodak Roundshot™. Cameras of this type take still frame exposures of several different but contiguous regions in sequence, and then concatenate them to form a panoramic image. Each exposure typically appears as a thin strip of the final image. Since these cameras take multiple exposures, obtaining a complete panoramic image takes on the order of several seconds. Accordingly, they are useful typically in the still frame area only, rather than video or real-time surveillance applications, in which high frame rates are necessary.
Based on the foregoing, there is a clear need for an optical system that can provide both a wide-angle view of an area of interest, and a close-up view of a particular region within the area of interest, using a single image sensor.
There is also a need for an optical system that can provide both a wide-angle view of an area of interest and a narrower view of a particular region within the area of interest, using a single image sensor, while maintaining registration between the wide field of view and close-up view when the image sensor is moved from the wide-angle view to a narrower view. There is also a need for an optical system that fulfills the foregoing needs and can be remotely controlled to carry out movement from the wide-angle view to the narrower view.
There is also a need for an optical system that fulfills the foregoing needs and can be automatically controlled to carry out movement from the wide-angle view to the narrower view.
SUMMARY OF THE INVENTION
These needs, and other needs described herein, are fulfilled by the preferred embodiment of the present invention, which generally comprises, in one aspect, an optical system that provides a wide field of view and a direct field of view of an area of interest, comprising a wide-angle optical system that reflects electromagnetic radiation from the wide field of view in the area of interest; an image sensor that can sense the radiation and generate a signal representing a visible image from the radiation; and means for moving the image sensor to a first position in which the image sensor receives the radiation reflected from the wide-angle optical system and forms a wide field of view image of the area of interest, and for moving the image sensor to a second position away from the wide-angle optical system in which the image sensor receives radiation from the area of interest and forms a direct field of view image.
One feature of this aspect is that the image sensor receives radiation from the area of interest without the radiation being first reflected from the wide-angle optical system and forms a direct field of view image. Another feature is means for redirecting radiation reflected from the wide-angle optical system to the image sensor. Still another feature is that the wide-angle optical system provides a substantially hemispherical field of view of the area of interest.
According to feature, the wide-angle optical system comprises a curved mirror. A related feature is that the curved mirror is formed with a partial quadric surface. Another related feature is that the curved mirror is a spherical mirror. Another related feature is that the curved mirror is a parabolic mirror. Still another related feature is that the curved mirror is a hyperbolic mirror. Yet another related feature is that the curved mirror is an elliptical mirror. Another related feature is that the wide-angle optical system comprises a plurality of planar mirrors.
Another feature is that the wide-angle optical system comprises a faceted surface, and in which each facet of the faceted surface is a mirror. Still another feature is that the wide-angle optical system comprises a faceted surface, and in which each facet of the faceted surface is a curved mirror.
According to another feature, the wide-angle optical system comprises a curved mirror and a second mirror aligned to receive radiation reflected from the curved mirror and to direct the reflected radiation to the image sensor. A related feature is that the curved mirror is a paraboloid mirror having a curved outer surface that substantially obeys the equation z=(h
2
−r
2
)/2h, where z is an axis of rotation, r is a radial coordinate, and h is twice the focal length of the paraboloid mirror.
Another related feature is that the wide-angle optical system comprises a curv
Korein James
Nayar Shree K.
Peri Venkata N.
Yaseen, II L. Clayton
Cyclo Vision Technologies, Inc.
Garber Wendy R.
Moe Aung S.
Pepper Hamilton LLP
Villacorta Gilberto M.
LandOfFree
Adjustable imaging system with wide angle capability does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adjustable imaging system with wide angle capability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adjustable imaging system with wide angle capability will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2561473