Adjustable headphone

Electrical audio signal processing systems and devices – Electro-acoustic audio transducer – Plural or compound reproducers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C381S370000, C381S374000, C381S377000

Reexamination Certificate

active

06724906

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
“Not Applicable”
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
“Not Applicable”
REFERENCE TO A SEQUENCE LISTING, A TABLE, OR A COMPUTER PROGRAM LISTING COMPACT DISC APPENDIX
“Not Applicable”
BACKGROUND OF THE INVENTION
This invention relates in general to the design of headphones and, in particular, to headphones that have an inner flexible headband or a headstrap coming in contact with the user's head, and this headstrap may alter in length or size to ensure proper fit of an earpiece to the head. The headstrap is anchored at each end to an outer headband, interconnecting a pair of earpieces, and also providing a resilient inner force to hold the headphone in place. Secondly, this invention relates to the headphones having particular cup structure designed to fit the earpiece over the user's ear.
There are numerous headphones having the mentioned above structure varying in acoustical parameters, design specifics and so forth. Nevertheless, it is rather hard to find an inexpensive headphone which can be worn comfortably for a relatively long period of time in one session. This is especially true for young computer users who spend long hours in front of the computer screen playing games or surfing the Net for their favorite musical and video files. A headphone's ability to adjust completely and comfortably to a particular user is becoming as important as its acoustical parameters.
The problem of a headphone adjustment mainly consists of two components that can be classified by a particular function which has to be performed to have comfortable and sustained accommodation to the user. Firstly, a headphone's headband has to provide proper positioning of the earpiece in a vertical axial direction in order to accommodate the distance from the scalp to the ear which varies from user to user. It constitutes the axial adjustment problem. Secondly, the headphone's driver unit has to fit closely and comfortably to the outer part of the ear, the pinna, in order to create an ergonomically and acoustically necessary coupling space between them. This is a problem of adjustment to the pinna.
AXIAL ADJUSTMENT PROBLEM
There are two commonly used ways to to adjust a headphone in a vertical axial direction. The first is when an earpiece and a headband are movably connected, providing telescopically adjustable positioning to the earpiece. This is telescopic detent-based adjustment. The second is when the vertical adjustment is based on changing the geometry of a headstrap having some elastic members, without manually moving parts, thus providing a headphone with axial self-adjustment.
Telescopic Detent-Based Adjustment
In the first case, the telescopically connected earpiece is moved manually, and its holding in place is made possible by means of a special positioning member, a detent, releaseably engaging one of corresponding depressions or openings. The detent can be part of either a headband or an earpiece. Consequently, the earpiece assembly, as well as the headband, can include a plurality of depressions or openings being designed to accommodate the detent. There are several headphone designs based on this concept. The design with the plurality of openings and the wedge shaped detent is described in U.S. Pat. No. 4,189,788 to Schenke et al. (1980). The elastic projecting member at the headband's end is shown in U.S. Pat. No. 4,445,457 to Jingu Akira (1984). The headphone with progressively shallow depressions is disclosed in U.S. Pat. No. 5,117,465 to James T. MacDonald (1992).
The main disadvantage of this design concept is a certain contradiction inherent to it. The detent's holding power has to be substantial enough to secure the earpiece in place, and, at the same time, it becomes a source of inconvenience when one needs to move the earpiece in order to adjust it. The greater is the holding power of the detent—the more resistance it creates to adjust the earpiece. Moreover, a headphone detent's ability to function greatly depends on its material properties. The wide application of plastic with significantly less resilience and durability, than that of stainless steel, results in lesser holding power, which can be applied by the detent. It means that during use the earpiece support becomes liable to get loose or shift from the headband, causing dislocation of the earpiece from the proper position on the pinna.
Therefore an optimal axial adjustment mechanism that balances the ease of use with precise and sustainable accommodation to the wearer is rather difficult to achieve in a framework of the telescopic detent-based adjustment. Alternatively, a concept of axial self-adjustment has been employed to satisfy users needs for a quick and comfortable fit of the headphones.
Axial Self-Adjustment
The conventional way of vertical axial self-adjustment is based on the use of some structural resilience in various embodiments. The most common way is when a headstrap is connected to earpieces by means of an elastic suspension in the form of elastic members, such as helical springs, flat coil springs or bands. Initially this idea was embodied in a headphone design described in U.S. Pat. No. 3,919,501 to Cech et al. (1975). A rather sophisticated suspension concept is realized in the form of a wind-in mechanism which is disclosed in U.S. Pat. No. 5,406,037 to Nageno et al (1995). The idea of having a suspender member consisting of some expendable and non-expendable sections is realized in U.S. Pat. No. 5,574,795 to Seki (1996).
Despite the differences the basic self-adjustment concept requires that the elastic member suspends the earpieces in such a manner that they are retracted upwardly by the resilient force of this elastic member and must be extended downward manually from their retracted position during the application to a wearer's ears. During the downward movement elastic member is stretched and it produces a return force corresponding to the respective distance between the top of the user's head and the ear opening. This return force pulls earpieces upward, and in order to hold them in place it must be counteracted by the friction between the earpiece pad and the ear. The friction is directly proportional to the opposite horizontal forces pressing the earpieces against the user's ears. These forces are produced by the headband's resilient resistance to its being pulled apart as a result of adjustment to the head.
Apparently, in order to have a headphone comfortably fitting the user, all these forces affecting the wearer's head must be balanced. The more elastic member is stretched—the greater friction has to be applied to balance the return forces created by this action. Thus, the disadvantage of this concept is that the system inevitably creates excessive pressure on the scull and ears, and especially, if the wearer's head is bigger than the average one. Additionally, the typical problem of these adjustment mechanisms based on the material's elasticity is that after some period of usage some of them are beginning to slacken off, causing dislocation of the earpiece from the proper position on the pinna. The common way to avoid this is to increase the stiffness of the elastic member, consequently making the initial pressure even greater. Considering the nature of these balanced forces and the great variety of human forms and shapes the necessary equilibrium can be reached either for a limited number of people or for a limited time only.
Therefore this type of adjustment provides quick but eventually uncomfortable and unsustainable accommodation to the user, and thus it is best suited for a situation when a headphone has to be shared by a group of users. For instance, headphones in musical records stores are generally used by different people for a relatively short period of time. To the contrary, in regards to personal usage, the most typical situation is when a headphone is used for a relatively long period of time by one person, and that requires to have comfor

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adjustable headphone does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adjustable headphone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adjustable headphone will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3220695

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.