Fluid sprinkling – spraying – and diffusing – Conduit or nozzle attached irrigation-type decelerator
Reexamination Certificate
2002-10-18
2004-12-07
Denion, Thomas (Department: 3748)
Fluid sprinkling, spraying, and diffusing
Conduit or nozzle attached irrigation-type decelerator
C239S569000, C239S443000
Reexamination Certificate
active
06827298
ABSTRACT:
BACKGROUND OF THE INVENTION
A. Field of the Invention
The field of the present invention relates generally to adjustable water distribution apparatuses utilized in irrigation systems. More particularly, the present invention relates to bubblers used to transfer fluid to one or more irrigation lines so as to deliver a controlled flow of such fluid to plants. Even more particularly, the present invention relates to such apparatuses that are primarily intended for drip irrigation systems and the like.
B. Background
Irrigation systems have generally been in use for thousands of years. A more recent improvement on irrigation systems, but still in use for many years, is the use of drip irrigation systems to more specifically direct water to the plant or plants where irrigation is desired. Drip irrigation systems better control the use and placement of water than non-drip irrigation systems by precisely placing the water at the plants where it is needed. In addition, drip irrigation systems are often specifically configured to allow for irrigation with very low flow rates. As a result, drip irrigation systems generally require somewhat less water than non-drip irrigation systems, which makes it particularly popular in the more arid regions of the world.
A typical drip irrigation system connects to a source of water and distributes a controlled quantity of that water through one or more distribution lines. The typical distribution line is a tubing made out of polyethylene, polyvinylchloride (PVC) and like materials. The distribution line can be open at the distal end to deliver water to a plant at the end of the line, often used with a device to keep bugs and debris from entering the line, or it can be closed at the distal end and utilize one or more flow control devices, known as emitters, along the line in a series arranged at the general position of the plants to be irrigated. Water flows from the source through the distribution lines towards the plants to be watered by that line, exiting the line at the end of the distribution line or at emitters placed along the line. As is well known, most sources of water are likely to contain particles and contaminants that can plug up the distribution lines or emitters disposed therein. Therefore, it is generally necessary to utilize some type of filter to keep such materials away from the distribution lines and emitters.
The typical drip irrigation system has multiple distribution lines. As a result, a water distribution apparatus in the form of a manifold-type device is required to distribute the source of water to the various distribution lines. Although the apparatus can be as simple as a device that receives water and allows it to flow pursuant to standard flow and pressure principles to the multiple lines, a more controlled apparatus is generally desired to prevent non-selective flow disparity between the distribution lines. As is well known, absent any other flow control mechanisms, the amount of water flowing through the a distribution line will be based on the pressure of the source water and the length of the line, number of emitters and the use or non-use of other flow control devices along the line compared to other lines. These factors may result in flow rates, whether equal or unequal, along the distribution lines that are not reflective of that which is the most beneficial for the plants. To solve this problem, the typical drip irrigation system will comprise an manifold-type apparatus to control the flow rates to the individual distribution lines. In the drip irrigation industry, these apparatuses are commonly referred to as bubblers.
Manifold-type devices for distributing fluid to a plurality of distribution lines are set forth in the prior art. For instance, U.S. Pat. No. 5,222,671 to Smiley describes a fluid distribution apparatus for connection to a source of water having multiple distribution lines connected to the apparatus at an elbow that is configured to receive water from the source of water. This apparatus utilizes replaceable fluid control elements configured for certain flow rates and a flexible diaphragm to regulate the pressure, which fluctuates from the source, inside the apparatus. This particular apparatus does not provide an easily adjustable flow rate control, including the ability to completely shut-off the flow if desired. Another manifold apparatus is described in U.S. Pat. No. 5,054,690 to Olson. This apparatus utilizes a plurality of sleeve members configured to receive an emitter adapter to control the flow rate through the distribution lines. If no flow is desired through a particular outlet, a plug device is placed at the upper end of the passage to block the passage. The Olson patent also shows the use of a screen-type filter disposed in the central portion of the apparatus under the screw-on cap to filter the water before it enters the emitter passage. Like the Smiley patent, the Olson device also does not provide for easy adjustment of the flow rates through the apparatus. Even when changes in the flow rated can be made, these devices only allow for discrete changes from one specific flow rate to another, as opposed to variable flow rates. In addition, the devices described in both of these patents utilize a female threaded connector that is directly screwed onto either the housing or a part of the housing. Because the distribution lines are attached to the connectors on the housing, thereby preventing sufficient rotation of the apparatus to unscrew it from the riser, this configuration is a problem if the user desires or needs to remove the apparatus from the water supply line. As a result, the user must either pull the lines off the connector, which can be very difficult, or cut the lines in order to remove the apparatus from the system.
Orbit Irrigation Products, Inc. out of Bountiful, Utah has a manifold they sell under the DripMaster® brand that is referred to as the Apollo 8 Manifold. This manifold utilizes individual control of the eight ports by utilizing a coin or screwdriver-type device to adjust a ramp-type valve mechanism so as to increase or decrease flow through the swivel elbows attached to the housing. Although the flow rate is somewhat easily adjusted from the top of the manifold, the configuration of the valve is such that it is not able to be completely closed (i.e., no flow), thereby requiring the use of a threaded cap at the distal end of the swivel elbow to provide a positive seal when no fluid is desired to pass through that elbow. The Orbit manifold has a separate center mounted filter that can removed for cleaning. In addition to the inability to completely seal the port by adjusting the valve, this particular apparatus requires the user to keep up with and manipulate a relatively significant number of small pieces of equipment (such as the threaded caps). As with the Smiley and Olson patents, the Orbit manifold attaches directly to the source water pipe, also requiring the user to pull off or cut the distribution lines from the swivel elbow if it becomes necessary to disconnect the manifold from the pipe.
The various prior art fluid distribution apparatuses for drip irrigation systems, including those identified above, have disadvantages that affect the functionality and usefulness of the apparatuses. Therefore, what is needed is a fluid distribution apparatus/bubbler that overcomes these disadvantages. The preferred apparatus should be easy to use and adaptable to typical drip irrigation systems. To be effective, such an apparatus should allow the user to easily adjust the flow rate for each outlet individually, completely shut-off one or more outlets without the need of plugs or similar devices, include a built-in screen and be removable from the water source pipe without having to pull or cut any distribution lines. In addition, the preferred apparatus should prevent unintentional complete removal of the valve assembly and allow the user to operate the valve so as to flush undesirable debris and contaminants from the drip irrigation system.
SUMMARY OF THE INVENTION
T
Denion Thomas
Eshete Zelalem
National Diversified Sales, Inc.
Ryan Richard A.
LandOfFree
Adjustable flow bubbler for drip irrigation systems does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adjustable flow bubbler for drip irrigation systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adjustable flow bubbler for drip irrigation systems will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3283726