Data processing: speech signal processing – linguistics – language – Speech signal processing – For storage or transmission
Reexamination Certificate
2000-03-20
2001-12-18
Knepper, David D. (Department: 2645)
Data processing: speech signal processing, linguistics, language
Speech signal processing
For storage or transmission
C704S200100
Reexamination Certificate
active
06332119
ABSTRACT:
SOURCE CODE APPENDIX
Source code for the control processor of the present invention has been included as a microfiche SOURCE CODE APPENDIX.
FIELD OF THE INVENTION
The present invention relates generally to an audio CODEC for the compression and decompression of audio signals for transmission over digital facilities, and more specifically, relates to an audio CODEC that is programmable by a user to control various CODEC operations, such as monitoring and adjusting a set of psycho-acoustic parameters, selecting different modes of digital transmission, and downloading new compression algorithms.
BACKGROUND OF THE INVENTION
Current technology permits the translation of analog audio signals into a sequence of binary numbers (digital). These numbers may then be transmitted and received through a variety of means. The received signals may then be converted back into analog audio signals. The device for performing both the conversion from analog to digital and the conversion from digital to analog is called a CODEC. This is an acronym for COder/DECoder.
The cost of transmitting bits from one location to another is a function of the number of bits transmitted per second. The higher the bit transfer rate the higher the cost. Certain laws of physics in human and audio perception establish a direct relationship between perceived audio quality and the number of bits transferred per second. The net result is that improved audio quality increases the cost of transmission.
CODEC manufacturers have developed technologies to reduce the number of bits required to transmit any given audio signal (compression techniques) thereby reducing the associated transmission costs. The cost of transmitting bits is also a function of the transmission facility used, i.e., satellite, PCM phone lines, ISDN (fiber optics).
A CODEC that contains some of these compression techniques also acts as a computing device. It inputs the analog audio signal, converts the audio signal to a digital bit stream, and then applies a compression technique to the bit stream thereby reducing the number of bits required to successfully transmit the original audio signal. The receiving CODEC applies the same compression techniques in reverse (decompression) so that it is able to convert the compressed digital bit stream back into an analog audio signal. The difference in quality between the analog audio input and the reconstructed audio output is an indication of the quality of the, compression technique. The highest quality technique would yield an identical signal reconstruction.
Currently, the most successful compression techniques are called perceptual coding techniques. These types of compression techniques attempt to model the human ear. These compression techniques are based on the recognition that much of what is given to the human ear is discarded because of the characteristics of the ear. For example, if a loud sound is presented to a human ear along with a softer sound, the ear will only hear the loud sound. As a result, encoding compression techniques can effectively ignore the softer sound and not assign any bits to its transmission and reproduction under the assumption that a human listener can not hear the softer sound even if it is faithfully transmitted and reproduced.
Many conventional CODECs use perceptual coding techniques which utilize a basic set of parameters which determine their behavior. For example, the coding technique must determine how soft a sound must be relative to a louder sound in order to make the softer sound a candidate for exclusion from transmission. A number which determines this threshold is considered a parameter of the scheme which is based on that threshold. These parameters are largely based on the human psychology of perception so they are collectively known as psycho-acoustic parameters.
However, conventional CODECs which use perceptual coding have experienced limitations, more specifically, manufacturers of existing CODECs preprogram all of the CODECs operating variables which control the compression technique, decompression technique, bit allocation and transmission rate. By preprogramming the CODEC, the manufacturer undesirably limits the user interaction with the resulting CODEC. For example, it is known that audio can be transmitted by digital transmission facilities. These digital transmissions include digital data services, such as conventional phone lines, ISDN, T1, and E1. Other digital transmission paths include RF transmission facilities such as spread spectrum RF transmission and satellite links.
Although existing CODECs can transmit compressed audio signals via digital transmission facilities, any variables regarding the mode of transmission are preprogrammed by the manufacturer of the CODEC, thereby limiting the CODECs use to a single specific transmission facility. Hence, the user must select a CODEC which is preprogrammed to be compatible with the user's transmission facility. Moreover, existing CODECs operate based on inflexible compression and bit allocation techniques and thus, do not provide users with a method or apparatus to monitor or adjust the CODEC to fit the particular user's wants and needs. Accordingly, users must test CODECs with different compression and bit allocation techniques and then select the one device which has the features or options so desired, e.g. satellite transmission capabilities.
Moreover, standard coding techniques have been developed in order to ensure interoperability of CODECs from different manufacturs and to ensure an overall level of audio quality, thereby limiting the CODEC's use to a single specific transmission facility. One such standard is the so-called ISO/MPEG Layer-II compression standard, for the compression and decompression of an audio input. This standard sets forth a compression technique and a bit stream syntax for the transmission of compressed binary data. The ISO/MPEG Layer-II standard defines a set of psycho-acoustic parameters that is useful in performing compression. U.S. Pat. No. 4,972,484, entitled “Method of Transmitting or Storing Masked Sub-band Coded Audio Signals,” discloses the ISO/MPEG Layer-II standard and is incorporated by reference.
However, conventional CODECs do not use a uniform set of parameters. Each CODEC manufacturer determines their own set of psycho-acoustic parameters either from a known standard or as modified by the manufacturer in an attempt to provide the highest quality sound while using the lowest number of bits to encode audio. Once the manufacturer selects a desired parameter set, the manufacturer programs values for each of the parameters. These preprogrammed parameter values correspond to the manufacturer's perception of an optimal audio quality at the decoder.
However, in conventional CODECs, users typically are unaware of the existence or nature of these parameters. Further, the user has no control over the parameter values. As a result, users were required to test different CODECs from different manufacturers and then select the CODEC that met the user's requirements or that sounded best to the user.
Typically, conventional CODECs utilize standard parameters which have been accepted by the International Standards Organization (ISO) and have been adopted as part of the International Standards Organization, Motion Picture Experts Group (ISO/MPEG) Layer-II compression standard. However, the ISO/MPEG Layer-II standard has met with limited acceptance since these parameters do not necessarily provide CD quality output. The ISO/MPEG Layer-II parameters are determined and set based on the average human ear. The parameters do not account for the variations between each individuals hearing capabilities. Hence, the conventional standards and CODECs do not afford the ability for users to tune their CODEC to the user's individual subjective hearing criteria. Nor are conventional CODECs able to meet changing audio needs add to shape the overall sound of their application.
A need remains within the industry for an improved CODEC which is more flexible, programma
Corporate Computer Systems
Knepper David D.
Nath & Associates PLLC
Ryan Robert C.
LandOfFree
Adjustable CODEC with adjustable parameters does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adjustable CODEC with adjustable parameters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adjustable CODEC with adjustable parameters will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2593137