Adipocyte complement related protein zacrp3x2 and nucleic...

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Amino acid sequence disclosed in whole or in part; or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S192100, C530S351000, C530S350000, C536S023500, C435S320100, C435S325000, C435S069100, C435S069700

Reexamination Certificate

active

06692748

ABSTRACT:

BACKGROUND OF THE INVENTION
Cell-cell and cell-extracellular matrix interactions allow for exchange of information between, and coordination among, various cells of a multi-cellular organism and are fundamental for most biological processes. These interactions play a role in everything from fertilization to death. Such interactions are essential during development and differentiation and are critical for the function and protection of the organism. For example, interaction between the cell and its environment is necessary to initiate and mediate tissue remodeling. Tissue remodeling may be initiated, for example, in response to many factors including physical injury, cytotoxic injury, metabolic stress or developmental stimuli. Modulation between pathology and healing (or metabolic optimization) may be done, in part, by the interaction of stimulated cells with the extracellular matrix as well as the local solvent.
The adipocyte complement related protein family plays a role in the interaction of cells with their environment, and appear to act at the interface of the extracellular matrix and the cell. These proteins include, Acrp30 (Scherer et al.,
J. Biol. Chem
. 270:26746-49, 1995), apM1 (Maeda et al.,
Biochem. Biophys. Res. Comm
. 221:286-9, 1996), GBP28 (Nakano et al.,
J. Biochem
. 120:803-12, 1996), zsig39 (Sheppard and Humes, WIPO Published Patent No: WO99/10492), zsig37 (Sheppard, WIPO Published Patent No: WO99/04000), ZCRP30R1 (Smith et al., WIPO Published Patent No. WO99/56619), ACRP30R1L (Hensley et al., WIPO Published Patent No: WO99/59618), ACRP30R2 (Hensley et al., WIPO Published Patent No: WO99/64629), PRO 353 and PRO 344 (Wood et al., WIPO Published Patent No. WO99/28462), zacrp2 (Piddington et al., WO 00/63376), zacrp3 (Piddington et al., WO 00/63377), zacrp4 (Piddington et al., WO 01/02565), zacrp5 (Piddington et al., WO 00/73444), zacrp6 (Piddington et al., WO 00/73466), zacrp11 (Piddington et al., WO 00/****), and zacrp12 (Piddington et al., WO 00/****).
These proteins all share a collagen-like domain comprising perfect Gly-Xaa-Pro and imperfect Gly-Xaa-Xaa collagen repeats, and a Clq domain. Complement factor Clq consists of six copies of three related polypeptides (A, B and C chains), with each polypeptide being about 225 amino acids long with a near amino-terminal collagen domain and a carboxy-terminal globular region. Six triple helical regions are formed by the collagen domains of the six A, six B and six C chains, forming a central region and six stalks. A globular head portion is formed by association of the globular carboxy terminal domain of an A, a B and a C chain. Clq is composed of six globular heads linked via six collagen-like stalks to a central fibril region. Sellar et al.,
Biochem. J
. 274: 481-90, 1991. This configuration is often referred to as a bouquet of flowers. Acrp30 has a similar bouquet structure formed from a single type of polypeptide chain. The Clq globular domain of ACRP30 has been determined to have a 10 beta strand “jelly roll” topology (Shapiro and Scherer,
Curr. Biol
. 8:335-8, 1998). The structural elements such as folding topologies, conserved residues and similar trimer interfaces and intron positions are homologous to the tumor necrosis factor family suggesting a link between the TNF and Clq families.
In addition, injury to the blood vessels sets in motion a series of events to repair the damage and control release of blood from the vessel. This process is known as hemostasis. Platelets play an early role in hemostasis by forming a thrombus or plug to temporarily repair the vessel damage. Platelets normally do not interact with the endothelium lining the vessel walls, but injury to blood vessels, through accident or during surgical procedures, may disrupt endothelial cells. Depending on the extent of the injury, various subendothelial elements such as collagens, elastic lamina or smooth muscle cells with associated fibrillar collagens will be exposed to the flowing blood.
When the subendothelium is exposed following vessel injury, platelets moving in the local blood flow interact with exposed subendothelium matrix containing collagen and are slowed down. Further interaction between receptors on the platelet surface and the exposed collagen layer leads to platelet binding and activation resulting in the arrest of local blood flow. The bound platelets are activated and form aggregates with platelets in the passing blood flow through the formation of fibrinogen-interplatelet bridges (Moroi and Jung,
Frontiers in Bioscience
3:719-28, 1998; Barnes et al.,
Atherosclerosis XI
, Jacotot et al., eds., Elsevier Science, pp. 299-306, 1998 and Barnes et al.,
Curr. Opin. Hematol
. 5:314-20, 1998).
The hemostatic response is graded and dependent on the degree of injury to the blood vessel, the specific blood vessels constituents exposed and the blood flow conditions in the injured area (Rand et al.,
Thrombosis and Haemostasis
78:445-50, 1997). Exposure of the subendothelium matrix (type VI collagen and von Willebrand factor), such as during mild vascular injury, promotes a low degree of adhesion and aggregation in areas with low blood flow conditions. Injuries that result in a greater degree of vascular trauma and exposure of additional vascular constituents, such as the internal elastic lamina and elastin-associated microfibrils, will stimulate the formation of stronger platelet aggregates. Severe vascular trauma, exposing fibril collagens, provokes a thrombotic platelet response, which protects the victim from excessive loss of blood (Rand et al., ibid.).
Complement factor Clq consists of six copies of three related polypeptides (A, B and C chains), with each polypeptide being about 225 amino acids long with a near amino-terminal collagen domain and a carboxy-terminal globular region. Six triple helical regions are formed by the collagen domains of the six A, six B and six C chains, forming a central region and six stalks. A globular head portion is formed by association of the globular carboxy terminal domain of an A, a B and a C chain. Clq is therefore composed of six globular heads linked via six collagen-like stalks to a central fibril region. Sellar et al.,
Biochem. J
. 274: 481-90, 1991. This configuration is often referred to as a bouquet of flowers. Acrp30 has a similar bouquet structure formed from a single type of polypeptide chain.
Clq has been found to stimulate defense mechanisms as well as trigger the generation of toxic oxygen species that can cause tissue damage (Tenner,
Behring Inst. Mitt
. 93:241-53, 1993). Clq binding sites are found on platelets. Additionally complement and Clq play a role in inflammation. The complement activation is initiated by binding of Clq to immunoglobulins.
Proteins that play a role in cellular interaction, such as transcription factors and hormones are useful diagnostic and therapeutic agents. Proteins that mediate specific interactions, such a remodeling, would be particularly useful. Moreover, inhibitors of hemostasis would be useful for to increase blood flow following vascular injury and to pacify collagenous surfaces. Inhibitors of Clq and the complement pathway would be useful for anti-inflammatory applications, inhibition of complement activation and thrombotic activity.
The present invention provides such polypeptides for these and other uses that should be apparent to those skilled in the art from the teachings herein.
DESCRIPTION OF THE INVENTION
The present invention provides a novel adipocyte complement related protein, designated “zacrp3×2”. The present invention also provides “zacrp3×2” variant polypeptides and “zacrp3×2” fusion proteins, as well as nucleic acid molecules encoding such polypeptides and proteins, and methods for using these nucleic acid molecules and amino acid sequences.
Within one aspect, the present invention provides an isolated polypeptide comprising SEQ ID NO:2. In one embodiment, the isolated polypeptide disclosed above is covalently linked at the amino or carboxyl terminus to a moiety selected from the group consisting o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adipocyte complement related protein zacrp3x2 and nucleic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adipocyte complement related protein zacrp3x2 and nucleic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adipocyte complement related protein zacrp3x2 and nucleic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3282509

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.