Adiabatic quantum computation with superconducting qubits

Superconductor technology: apparatus – material – process – High temperature devices – systems – apparatus – com- ponents,... – Information processing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S048000, C700S090000

Reexamination Certificate

active

07418283

ABSTRACT:
A method for quantum computing using a quantum system comprising a plurality of qubits is provided. The system can be in any one of at least two configurations at any given time including one characterized by an initialization Hamiltonian HOand one characterized by a problem Hamiltonian HP. The problem Hamiltonian HPhas a ground state. Each respective first qubit in the qubits is arranged with respect to a respective second qubit in the qubits such that they define a predetermined coupling strength. The predetermined coupling strengths between the qubits in the plurality of qubits collectively define a computational problem to be solved. In the method, the system is initialized to HOand is then adiabatically changed until the system is described by the ground state of the problem Hamiltonian HP. Then the state of the system is read out by probing an observable of the σXPauli matrix operator.

REFERENCES:
patent: 6885325 (2005-04-01), Omelyanchouk et al.
patent: 2002/0177529 (2002-11-01), Ustinov
patent: 2003/0055513 (2003-03-01), Raussendorf et al.
patent: 2003/0169041 (2003-09-01), Coury et al.
patent: 2003/0224944 (2003-12-01), Il'ichev et al.
patent: 2004/0173792 (2004-09-01), Blais et al.
patent: 2004/0238813 (2004-12-01), Lidar et al.
patent: 2005/0062072 (2005-03-01), Yamamoto et al.
patent: 2002-150778 (2002-05-01), None
patent: WO- 02/073229 (2002-09-01), None
patent: WO- 03/021527 (2003-03-01), None
U.S. Appl. No. 60/588,002, Amin et al.
U.S. Appl. No. 60/557,748, Amin et al.
Aassime, A., D. Gunnarsson, K. Bladh, and P. Delsing, 2001, “Radio-frequency single-electron transistor: Toward the shot-noise limit,” Appl. Phys. Lett. 79, pp. 4031-4033.
Astafiev, O., Yu.A. Pashkin, T. Yamamoto, Y. Nakamura, and J.S. Tsai, 2004, “Quantum Noise in the Josephson Charge Qubit,” Phys. Rev. Lett. 93, 267007.
Astafiev, O., Yu.A. Pashkin, T. Yamamoto, Y. Nakamura, and J.S. Tsai, 2004, “Single-shot measurement of the Josephson charge qubit,” Phys. Rev. B 69, 180507(R).
Averin, D.V., and C. Bruder, 2003, “Variable Electrostatic Transformer: Controllable Coupling of Two Charge Qubits,” Phys. Rev. Lett. 91, 057003.
Barahona, F., 1982, “On the Computational Complexity of Ising Spin Models,” J. Phys. A: Math. Gen. 15, pp. 3241-3253.
Bieche, I., R. Maynard, R. Rammal, and J.P. Uhry, 1980, “On the Ground States of the Frustration Model of a Spin Glass by a Matching Method of Graph Theory,” J. Phys. A: Math. Gen. 13, pp. 2553-2576.
Blais, A., R.-S. Huang, A. Wallraff, S.M. Girvin, and R.J. Schoeldof, 2004, “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation,” Phys. Rev. A 69, 062320.
Bocko, M.F., A.M. Herr, and M.J. Feldman, 1997, “Prospects for Quantum Coherent Computation Using Superconducting Effects,” IEEE Trans. Appl. Supercond. 7, pp. 3638-3641.
Brody, T.A., J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, 1981, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, pp. 385-479.
Cormen, T.H., C.E. Leiserson, and R.L. Rivest, 1990,Introduction to Algorithms, (MIT Press, Cambridge), pp. 964-985.
Devoret, M.H., and R.J. Schoelkopf, 2000, “Amplifying quantum signals with the single-electron transistor,” Nature 406, pp. 1039-1046.
Devoret, M.H., A. Wallraff, and J.M. Martinis, 2004, “Superconducting Qubits: A Short Review,” arXiv.org: cond-mat/0411174.
DiVincenzo, D., 2000, “The Physical Implementation of Quantum Computation,” arXiv.org: quant-ph/0002077. Also published in Braunstein, S. L., and H.-K. Lo (eds.), 2000, Scalable Quantum Computers, Wiley-VCH, Berlin, ISBN 3-527-40321-3.
Duty, T., D. Gunnarsson, K. Bladh, and P. Delsing, 2004, “Coherent dynamics of a Josephson charge qubit,” Phys. Rev. B 69, 140503(R).
Farhi, E., J. Goldstone, and S. Gutmann, 2002, “Quantum Adiabatic Evolution Algorithms versus Simulated Annealing,” arXiv.org: quant-ph/0201031.
Farhi, E., J. Goldstone, and S. Gutmann, 2002, “Quantum Adiabatic Evolution with Different Paths,” arXiv.org: quant-ph/0208135.
Farhi, E., J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, 2001, “A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem,” Science 292, pp. 472-475.
Farhi, E., J. Goldstone, S. Gutmann, and M. Sipser, 2000, “Quantum Computation by Adiabatic Evolution,” arXiv.org: quant-ph/0001106.
Friedman, J.R., V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, 2000, “Quantum superposition of distinct macroscopic states,” Nature 406, pp. 43-46.
Garanin, D.A., and R. Schilling, 2002, “Effects of nonlinear sweep in the Landau-Zener-Stueckelberg effect,” Phys. Rev. B 66, 174438.
Goemans, M.X., and D.P. Williamson, 1995, “Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming,” Journal of the Association for Computing Machinery 42, pp. 1115-1145.
Hogg, T., 2002, “Adiabatic Quantum Computing for Random Satisfiability Problems,” Phys. Rev. A 67, 022314.
E. Il'ichev, A.Yu. Smirnov, M. Grajcar, A. Izmalkov, D. Born, N. Oukhanski, Th. Wagner, W. Krech, H.-G. Meyer, and A. Zagoskin, 2004, “Radio-Frequency Method for Investigation of Quantum Properties of Superconducting Structures,” arXiv.org: cond-mat/0402559.
Izmalkov, A., M. Grajcar, E. Il'ichev, A. Oukhanski, Th. Wagner, H.-G. Meyer, W. Krech, M.H.S. Amin, A. Maassen van den Brink, and A.M. Zagoskin, 2004, “Observation of macroscopic Landau-Zener transitions in a superconducting device,” Europhys. Lett. 65, pp. 844-849.
Kadowaki, T., and H. Nishimori, 1998, “Quantum annealing in the transverse Ising model,” Phys. Rev. E 58, pp. 5355-5363.
Kaminsky, W.M., and S. Lloyd, 2002, “Scalable Architecture for Adiabatic Quantum Computing of NP-Hard Problems,” in Quantum Computing & Quantum Bits in Mesoscopic Systems, Kluwer Academic, Dordrecht, Netherlands, also published as arXiv.org: quant-ph/0211152.
Kaminsky, W.M., S. Lloyd, and T.P. Orlando, 2004, “Scalable Superconducting Architecture for Adiabatic Quantum Computation,” arXiv.org: quant-ph/0403090.
Kamon, M., M.J. Ttsuk, and J.K. White, 1994, “FASTHENRY: A Multipole-Accelerated 3-D Inductance Extraction Program,” IEEE Trans. on Microwave Theory and Techniques 42, pp. 1750-1758.
Makhlin Y., G. Schön, and A. Shnirman, 2001, “Quantum-State Engineering with Josephson-Junction Devices,” Rev. Mod. Phys. 73, pp. 357-400.
Mitchell, D.R., C. Adami, and C.P. Williams, 2004, “A Random Matrix Model of Adiabatic Quantum Computing,” arXiv.org: quant-ph/0409088.
Mizel, A.M., M.W. Mitchell, and M.L. Cohen, 2001, “Energy barrier to decoherence,” Phys. Rev. A 63, 040302.
Mizel, A.M., M.W. Mitchell, and M.L. Cohen, 2002, “Scaling Considerations in Ground State Quantum Computation,” Phys. Rev. A 65, pp. 022315.
Mooij, J.E., T.P. Orlando, L. Levitov, L. Tian, C.H. van de Wal, S. Lloyd, 1999, “Josephson Persistent-Current Qubit,” Science 285, pp. 1036-1039.
Nielsen, M.A., and I.L. Chuang, 2000,Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, pp. 40-42, 141-153, 171-173, and 263-265.
Nabors, K.S. Kim and J. White, 1992, “Fast capacitance extraction of general three-dimensional structures,” IEEE Trans. Microwave Theory and Techniques 40, pp. 1496-1507.
Nakamura, Y., Yu. A. Pashkin, J.S. Tsai, 1999, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, pp. 786-788.
Orlando, T.P., J.E. Mooji, L. Tian, C.H. van der Wal, L.S. Levitov, S. Lloyd, J.J. Mazo, 1999, “Superconducting persistent-current qubit,” Phys. Rev. B 60, 15398.
Pashkin Yu. A., T. Yamamoto, O. Astafiev, Y. Nakamura, D.V. Averin, J.S.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adiabatic quantum computation with superconducting qubits does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adiabatic quantum computation with superconducting qubits, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adiabatic quantum computation with superconducting qubits will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4003267

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.