Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Tunneling through region of reduced conductivity
Reexamination Certificate
2006-11-14
2006-11-14
Crane, Sara (Department: 2811)
Active solid-state devices (e.g., transistors, solid-state diode
Thin active physical layer which is
Tunneling through region of reduced conductivity
C257S039000, C365S160000, C365S162000
Reexamination Certificate
active
07135701
ABSTRACT:
A method for computing using a quantum system comprising a plurality of superconducting qubits is provided. Quantum system can be in any one of at least two configurations including (i) an initialization Hamiltonian H0and (ii) a problem Hamiltonian HP. The plurality of superconducting qubits are arranged with respect to one another, with a predetermined number of couplings between respective pairs of superconducting qubits in the plurality of qubits, such that the plurality of superconducting qubits, coupled by the predetermined number of couplings, collectively define a computational problem to be solved. In the method, quantum system is initialized to the initialization Hamiltonian HO. Quantum system is then adiabatically changed until it is described by the ground state of the problem Hamiltonian HP. The quantum state of quantum system is then readout thereby solving the computational problem to be solved.
REFERENCES:
patent: 6885325 (2005-04-01), Omelyanchouk et al.
patent: 2002/0177529 (2002-11-01), Ustinov
patent: 2003/0055513 (2003-03-01), Raussendorf et al.
patent: 2003/0169041 (2003-09-01), Coury et al.
patent: 2003/0224944 (2003-12-01), Il'ichev et al.
patent: 2004/0173792 (2004-09-01), Blais et al.
patent: 2004/0238813 (2004-12-01), Lidar et al.
patent: 2005/0062072 (2005-03-01), Yamamoto et al.
patent: 2002-150778 (2002-05-01), None
patent: WO-02/073229 (2002-09-01), None
patent: WO-03/021527 (2003-03-01), None
U.S. Appl. No. 60/588,002 filed Jul. 13, 2004, Amin et al.
U.S. Appl. No. 60/557,748 filed Mar. 29, 2004, Amin et al.
Aassime, A., D. Gunnarsson, K. Bladh, and P. Delsing, 2001, “Radio-frequency single-electron transistor: Toward the shot-noise limit,” Appl. Phys. Lett. 79, pp. 4031-4033.
Astafiev, O., Yu.A. Pashkin, T. Yamamoto, Y. Nakamura, and J.S. Tsai, 2004, “Quantum Noise in the Josephson Charge Qubit,” Phys. Rev. Lett. 93, 267007.
Astafiev, O., Yu.A. Pashkin, T. Yamamoto, Y. Nakamura, and J.S. Tsai, 2004, “Single-shot measurement of the Josephson charge qubit,” Phys. Rev. B 69, 180507(R).
Averin, D.V., and C. Bruder, 2003, “Variable Electrostatic Transformer: Controllable Coupling of Two Charge Qubits,” Phys. Rev. Lett. 91, 057003.
Barahona, F., 1982, “On the Computational Complexity of Ising Spin Models,” J. Phys. A: Math. Gen. 15, pp. 3241-3253.
Bieche, I., R. Maynard, R. Rammal, and J.P. Uhry, 1980, “On the Ground States of the Frustration Model of a Spin Glass by a Matching Method of Graph Theory,” J. Phys. A: Math. Gen. 13, pp. 2553-2576.
Blais, A., R.-S. Huang, A. Wallratt, S.M. Girvin, and R.J. Schoelkopf, 2004, “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation,” Phys. Rev. A 69, 062320.
Bocko, M.F., A.M. Herr, and M.J. Feldman, 1997, “Prospects for Quantum Coherent Com-putation Using Superconducting Effects,” IEEE Trans. Appl. Supercond. 7, pp. 3638-3641.
Brody, T.A., J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, 1981, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, pp. 385-479.
Cormen, T.H., C.E. Leiserson, and R.L. Rivest, 1990,Introduction to Algorithms, (MIT Press, Cambridge), pp. 964-985.
Devoret, M.H., and R.J. Schoelkopf, 2000, “Amplifying quantum signals with the single-electron transistor,” Nature 406, pp. 1039-1046.
Devoret, M.H., A. Wallraff, and J.M. Martinis, 2004, “Superconducting Qubits: A Short Review,” arXiv.org: cond-mat/0411174.
DiVincenzo, D., 2000, “The Physical Implementation of Quantum Computation,” arXiv.org: quant-ph/0002077. Also published in Braunstein, S. L., and H.-K. Lo (eds.), 2000, Scalable Quantum Computers, Wiley-VCH, Berlin, ISBN 3-527-40321-3.
Duty, T., D. Gunnarsson, K. Bladh, and P. Delsing, 2004, “Coherent dynamics of a Josephson charge qubit,” Phys. Rev. B 69, 140503(R).
Farhi, E., J. Goldstone, and S. Gutmann, 2002, “Quantum Adiabatic Evolution Algorithms versus Simulated Annealing,” arXiv.org: quant-ph/0201031.
Farhi, E., J. Goldstone, and S. Gutmann, 2002, “Quantum Adiabatic Evolution with Different Paths,” arXiv.org: quant-ph/0208135.
Farhi, E., J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, 2001, “A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem,” Science 292, pp. 472-475.
Farhi, E., J. Goldstone, S. Gutmann, and M. Sipser, 2000, “Quantum Computation by Adiabatic Evolution,” arXiv.org: quant-ph/0001106.
Friedman, J.R., V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, 2000, “Quantum superposition of distinct macroscopic states,” Nature 406, pp. 43-46.
Garanin, D.A., and R. Schilling, 2002, “Effects of nonlinear sweep in the Landau-Zener-Stueckelberg effect,” Phys. Rev. B 66, 174438.
Goemans, M.X., and D.P. Williamson, 1995, “Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming,” Journal of the Association for Computing Machinery 42, pp. 1115-1145.
Hogg, T., 2002, “Adiabatic Quantum Computing for Random Satisfiability Problems,” Phys. Rev. A 67, 022314.
E. Il'ichev, A. Yu. Simirnov, M. Grajcar, A. Izmalkov, D. Born, N. Oukhanski, Th. Wagner, W. Krech, H.-G. Meyer, and A. Zagoskin, 2004, “Radio-Frequency Method for Investigation of Quantum Properties of Superconducting Structures,” arXiv.org: cond-mat/0402559.
Izmalkov, A., M. Grajcar, E. Il'chev, A. Oukhanski, Th. Wagner, H.-G. Meyer, W. Krech, M.H.S. Amin, A. Maassen van den Brink, and A.M. Zagoskin, 2004, “Observation of macroscopic Landau-Zener transitions in a superconducting device,” Europhys. Lett. 65, pp. 844-849.
Kadowaki, T., and H. Nishimori, 1998, “Quantum annealing in the transverse Ising model,” Phys. Rev. E 58, pp. 5355-5363.
Kaminsky, W.M., and S. Lloyd, 2002, “Scalable Architecture for Adiabatic Quantum Computing of NP-Hard Problems,” in Quantum Computing & Quantum Bits in Mesoscopic Systems, Kluwer Academic, Dordrecht, Netherlands, also published as arXiv.org: quant-ph/0211152.
Kaminsky, W.M., S. Lloyd, and T.P. Orlando, 2004, “Scalable Superconducting Architecture for Adiabatic Quantum Computation,” arXiv.org: quant-ph/0403090.
Kamon, M., M.J. Ttsuk, and J.K. White, 1994, “FASTHENRY: A Multipole-Accelerated 3-D Inductance Extraction Program,” IEEE Trans. on Microwave Theory and Techniques 42, pp. 1750-1758.
Makhlin Y., G. Schön, and A. Shnirman, 2001, “Quantum-State Engineering with Josephson-Junction Devices,” Rev. Mod. Phys. 73, pp. 357-400.
Mitchell, D.R., C. Adami, and C.P. Williams, 2004, “A Random Matrix Model of Adiabatic Quantum Computing,” arXiv.org: quant-ph/0409088.
Mizel, A.M., M.W. Mitchell, and M.L. Cohen, 2001, “Energy barrier to decoherence,” Phys. Rev. A 63, 040302.
Mizel, A.M., M.W. Mitchell, and M.L. Cohen, 2002, “Scaling Considerations in Ground State Quantum Computation,” Phys. Rev. A 65, pp. 022315.
Mooij, J.E., T.P. Orlando, L. Levitov, L. Tian, C.H. van de Wal, S. Lloyd, 1999, “Josephson Persistent-Current Qubit,” Science 285, pp. 1036-1039.
Nielsen, M.A., and I.L. Chuang, 2000,Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, pp. 40-42, 141-153, 171-173, and 263-265.
Nabors, K.S. Kim and J. White, 1992, “Fast capacitance extraction of general three-dimensional structures,” IEEE Trans. Microwave Theory and Techniques 40, pp. 1496-1507.
Nakamura, Y., Yu. A. Pashkin, J.S. Tsai, 1999, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, pp. 786-788.
Orlando, T.P., J.E. Mooij, L. Tian, C.H. van der Wal, L.S. Levitov, S. Lloyd, J.J. Mazo, 1999, “Superconducting persistent-current qubit,” Phys. Rev. B 60, 15398.
Pashkin Yu. A., T.
Amin Mohammad H. S.
Steininger Miles F. H.
Crane Sara
D-Wave Systems Inc.
LandOfFree
Adiabatic quantum computation with superconducting qubits does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adiabatic quantum computation with superconducting qubits, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adiabatic quantum computation with superconducting qubits will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3664903