Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...
Reexamination Certificate
2002-05-28
2004-03-23
Mertz, Prema (Department: 1646)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
Blood proteins or globulins, e.g., proteoglycans, platelet...
C530S350000, C536S023400, C435S069700
Reexamination Certificate
active
06710169
ABSTRACT:
BACKGROUND OF THE INVENTION
This application relates to compositions for antiviral or immunomodulatory therapy. In particular, it relates to compositions useful in the treatment of Human Immunodeficiency Virus (HIV) infections.
The primary immunologic abnormality resulting from infection by HIV is the progressive depletion and functional impairment of T lymphocytes expressing the CD4 cell surface glycoprotein (H. Lane et al., Ann. Rev. Immunol. 3:477 [1985]). CD4 is a non-polymorphic glycoprotein with homology to the immunoglobulin gene superfamily (P. Maddon et al., Cell 42:93 [1985]). Together with the CD8 surface antigen, CD4 defines two distinct subsets of mature peripheral T cells (E. Reinherz et al., Cell 19:821 [1980]), which are distinguished by their ability to interact with nominal antigen targets in the context of class I and class II major histocompatibility complex (MHC) antigens, respectively (S. Swain, Proc. Natl. Acad. Sci. 78:7101 [1981]; E. Engleman et al., J. Immunol. 127:2124 [1981]; H. Spitz et al., J. Immunol. 129:1563 [1982]; W. Biddison et al., J. Exp. Med. 156:1065 [1982]; and D. Wilde et al., J. Immunol. 131:2178 [1983]). For the most part, CD4 T cells display the helper/inducer T cell phenotype (E. Reinherz, supra), although CD4 T cells characterized as cytotoxic/suppressor T cells have also been identified (Y. Thomas et al., J. Exp. Med. 154:459 [1981]; S. Meuer et al., Proc. Natl. Acad. Sci. USA 79:4395 [1982]; and A. Krensky et al., Proc. Natl. Acad. Sci. USA 79:2365 [1982]). The loss of CD4 helper/inducer T cell function probably underlies the profound defects in cellular and humoral immunity leading to the opportunistic infections and malignancies characteristic of the acquired immunodeficiency syndrome (AIDS) (H. Lane supra).
Studies of HIV-I infection of fractionated CD4 and CD8 T cells from normal donors and AIDS patients have revealed that depletion of CD4 T cells results from the ability of HIV-I to selectively infect, replicate in, and ultimately destroy this T lymphocyte subset (D. Klatzmann et al., Science 225:59 [1984]). The possibility that CD4 itself is an essential component of the cellular receptor for HIV-I was first indicated by the observation that monoclonal antibodies directed against CD4 block HIV-I infection and syncytia induction (A. Dalgleish et al., Nature [London] 312:767 [1984]; J. McDougal et al., J. Immunol. 135:3151 [1985]). This hypothesis has been confirmed by the demonstration that a molecular complex forms between CD4 and gp120, the major envelope glycoprotein of HIV-I (J. McDougal et al., Science 231:382 [1986]; and the finding that HIV-I tropism can be conferred upon ordinarily non-permissive human cells following the stable expression of a CD4 cDNA (P. Maddon et al., Cell 47:333 [1986]). Furthermore, the neurotropic properties of HIV-I, reflected by a high incidence of central nervous system dysfunction in HIV-I infected individuals (W. Snider et al., Ann. Neurol. 14:403 [1983]), and the ability to detect HIV-I in the brain tissue and cerebrospinal fluid of AIDS patients (G. Shaw et al., Science 227:177 [1985]; L. Epstein, AIDS Res. 1:447 [1985]; S. Koenig, Science 233:1089 [1986]; D. Ho et al., N. Engl. J. Med. 313:1498 [1985]; J. Levy et al., Lancet II:586 [1985]), appears to have its explanation in the expression of CD4 in cells of neuronal, glial and monocyte/macrophage origin (P. Maddon, Cell 47:444 [1986]; I. Funke et al., J. Exp. Med. 165:1230 [1986]; B. Tourvieille et al., Science 234:610 [1986]).
In addition to determining the susceptibility to HIV-I infection, the manifestation of cytopathic effects in the infected host cell appears to involve CD4. Antibody to CD4 was found to inhibit the fusion of uninfected CD4 T cells with HIV-I infected cells in vitro; moreover, the giant multinucleated cells produced by this event die shortly after being formed resulting in the depletion of the population of CD4 cells (J. Lifson et al., Science 232:1123 [1986]). Formation of syncytia also requires gp120 expression, and can be elicited by coculturing CD4-positive cell lines with cell lines expressing the HIV-I env gene in the absence of other viral structural or regulatory proteins (J. Sodroski et al., Nature 322:470 [1986]; J. Lifson et al., Nature 323:725 [1986]). Thus, in mediating both the initial infection by HIV-I as well as eventual cell death, the interaction between gp120 and CD4 constitutes one of several critical entry points in the viral life cycle amenable to therapeutic intervention (H. Mitsuya et al., Nature 325:773 [1987]).
The known sequence of the CD4 precursor predicts a hydrophobic signal peptide, an extracellular region of approximately 370 amino acids, a highly hydrophobic stretch with significant identity to the membrane-spanning domain of the class II MHC beta chain, and a highly charged intracellular sequence of 40 residues (P. Madden, Cell 42:93 [1985]). The extracellular domain of CD4 consists of four contiguous regions each having amino acid and structural similarity to the variable and joining (V-J) domains of immunoglobulin light chains as well as related regions in other members of the immunoglobulin gene superfamily (a subclass of which are defined herein by the coined term “adhesons”. These structurally similar regions of CD4 are termed the V
1
, V
2
, V
3
and V
4
domains (denominated 1-4 in FIG.
3
).
A successful strategy in the development of drugs for the treatment of many receptor mediated abnormalities has been the identification of antagonists which block binding of the natural ligand. Since the CD4 adheson ordinarily binds to the recognition sites of the HIV envelope it would appear to be a candidate for therapeutically sequestering these HIV sites, thereby blocking viral infectivity. However, full length CD4 and other adhesons are cell membrane proteins which are anchored in the lipid bilayer of cells. The presence of membrane components will be undesirable from the standpoint of manufacturing and purification. In addition, since adhesons are normally present only on cell surfaces, it would be desirable to produce adhesons in a form which is more stable in the circulation. Additionally, even truncated, soluble CD4 adheson (generally referred to as CD4T) may not be optimally effective as a therapeutic since it possesses a relatively short biological half-life, binds to HIV no better than cell surface CD4, may not cross the placental or other biological barriers and since it merely sequesters the HIV recognition sites without in itself bearing an infected-cell killing or virus killing functionality.
Accordingly, it is an object of this invention to produce soluble, secreted adhesons. It is another object to produce CD4 derivatives useful in the treatment of AIDS and related conditions, in a manner essentially unaffected by the extreme degree of genetic variation observed among various HIV-I isolates and their respective env polypeptides (J. Coffin, Cell 46:1 [1986]). Still another object is to prepare adhesons fused to other polypeptides in order to provide molecules with novel functionalities such as those described above for therapeutic use, or diagnostic reagents for the in vitro assay of adhesons or their ligands. In particular, it is an objective to prepare molecules for directing toxins or effector molecules (for example the Fc domain of immunoglobulin) to cells bearing receptors for the adhesons, e.g. HIV gp120 in the case of CD4, and for use in facilitating purification of the adhesons. It is a further object to provide stable, highly purified adheson preparations.
SUMMARY
The objects of this invention are accomplished by providing nucleic acid encoding an amino acid sequence variant of an adheson, in particular a variant in which the trans-membrane
Capon Daniel J.
Gregory Timothy J.
Genentech Inc.
Kubinec Jeffrey S.
Mertz Prema
LandOfFree
Adheson variants does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adheson variants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adheson variants will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3265386