Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Adhesive outermost layer
Reexamination Certificate
1998-05-01
2001-04-03
Seidleck, James J. (Department: 1711)
Stock material or miscellaneous articles
Web or sheet containing structurally defined element or...
Adhesive outermost layer
C428S356000, C428S346000, C428S343000, C156S307100, C156S307300, C156S327000, C156S083000, C156S275500, C156S275700, C156S145000, C427S508000, C427S516000, C522S095000, C522S097000, C522S096000
Reexamination Certificate
active
06210796
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to an adhesive coating film and to its preparation.
Adhesive coating films are known. For instance, German Utility Model 72 41 096 describes a self-supporting, flexible coating lamina in web or sheet form, which may be provided on one side with a self-adhesive composition, and is covered with a release paper (p. 2, middle), use being made of conventional self-adhesive compositions based on rubber/resin or acrylate (p. 3, bottom). Although such products avoid conventional coating by brushing or dipping and the problems with solvents etc. that such coating entails, they nevertheless have important practical deficiencies in terms of their tack, processability and stability, and such products have, accordingly, been unable to establish themselves.
Products of this kind are also described by DE 30 42 156 C2, which in fact describes a transferable coating sheet for which acrylate resin coating materials, in particular, are applied to a backing film from which these coating materials can then be transferred to the background that is to be coated, a waxlike release layer being intended to facilitate detachment from the backing film, while a self-adhering adhesive is used for bonding the coating material (col. 4, l. 31 ff.). These products too exhibit the above-mentioned deficiencies.
German Utility Model G 81 30 861 discloses a multicoat label which consists of one thin and one thick coat, both of which are electron beam-cured and applied without solvent, the two coats featuring good color contrast. A laser can be used to burn through the upper coat so that the lower coat becomes visible in a contrast color to the upper, in the form of a script mark or the like. A label of this kind can be stuck on by means of a pressure-sensitive, hotmelt or reactive adhesive (p. 2, l. 18), preference being given to the use of pressure-sensitive adhesives. Products of this kind are, however, less suitable for coating surfaces.
EP 230.364 B1 discloses laminates for the transfer of coating materials, in which an at least partly heat-activatable adhesive is employed, having a specific glass transition point and modulus of elasticity. A disadvantage of these products is that they are not radiation-curable.
In addition, EP 283.651 B1 describes coats and coating sheets where the coating material is applied in two or more layers to a radiation-permeable plastic film and is cured by irradiation through this film. These coating sheets of highly complex configuration can be provided with an adhesive layer (p. 4, l. 22/23) comprising free chemically reactive groups and synthetic resin or plastic, especially with a mixture of polyisocyanate and hexamethylenetetramine and an OH-containing PVC copolymer (p. 5, l. 16-24). Disadvantages of such products can be summarized as follows:
solid colors require a two-coat system.
Topcoats are produced with the solventborne coating materials,
topcoats likewise [sic].
As a result of roller application techniques, a preferential direction of the texturing is unavoidable.
It is impossible to achieve all degrees of matt, since the texturing is produced by way of the topcoat and is leveled by the application of the printed layer and of the transparent layer.
The transparent layer is not particularly protected against external contamination by the technique. Clean room conditions are required.
EP 547.506 A1 describes a process for coating aluminum in which a multilayer composite is built up on a carrier film. Finally, an adhesive layer is applied (col. 4, l. 45-53), based on epoxide, polyester, polyurethane, acrylate, urea or the like, with sufficient crosslinker also being employed.
SUMMARY OF THE INVENTION
The object of the invention was to provide an adhesive coating film which does not have the disadvantages of the prior art, or at least not to the same extent.
The invention relates accordingly to an adhesive coating film consisting of
a) a radiation-cured coat which comprises
from 40 to 90% by weight, preferably from 50 to 60% by weight, of urethane acrylate,
from 0 to 20% by weight, preferably from 10 to 15% by weight, of polyether acrylate,
from 0 to 10% by weight, preferably from 2 to 5% by weight, of a carboxy-functional (meth)acrylic ester,
from 10 to 50% by weight, preferably from 25 to 40% by weight, of reactive diluent,
from 0 to 30% by weight of pigments
from 0 to 10% by weight of other customary coatings fillers, and
in the case of curing with UV radiation, from 0 to 10% by weight, preferably from 3 to 6% by weight, of photoinitiator, and
b) which carries on one side an adhesive composition which
has free NCO groups in the freshly applied adhesive composition,
can be plastified thermally, especially under the intended processing conditions, and
has a markedly weak surface tack.
DETAILED DESCRIPTION OF THE INVENTION
In the text below the constituents of the coat and of the adhesive composition are described in detail:
Urethane acrylate
The urethane acrylates of the invention consist preferably of from 30 to 45% by weight of polyester, with very particular preference from 30 to 40% by weight, from 0.01 to 0.1% by weight of catalysts, from 0.05 to 0.1% by weight of stabilizers, from 10 to 20, preferably from 15 to 20% by weight of hydroxyethyl acrylate, from 15 to 25, preferably from 15 to 20% by weight of reactive diluent and from 20 to 35, preferably from 25 to 35% by weight of a diisocyanate component.
The polyesters employed in accordance with the invention consist of from 50 to 75% by weight, preferably from 55 to 65% by weight, of alcohol and from to 20 to 50, preferably from 30 to 45% by weight of acid and also 5% by weight of customary auxiliaries.
The preparation of the hydroxyl-containing polyester resins takes place in a known manner by esterifying polybasic carboxylic acids with polyhydric alcohols in the presence of appropriate catalysts. Instead of the free acid it is also possible to employ ester-forming derivatives thereof. Examples of alcohols suitable for preparing the polyesters are ethylene glycol, 1,2propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, diethylene glycol, triethylene glycol and also triols, such as glycerol, trimethylolethane, trimethylolpropane and tris-2-hydroxyethyl isocyanurate, for example.
Also suitable are cycloaliphatic alcohols, such as cyclohexanols and 1,4-bis(hydroxymethyl)cyclohexane, aromatic alcohols, such as 1,3-xylylenediol, and phenols, such as 2,2-bis(4-hydroxyphenyl)propane (bisphenol A).
Preference is given to the use of mixtures of trimethylolpropane, triethylene glycol, cyclohexane-dimethanol.
Also suitable are dihydric aliphatic alcohols, such as 1,4-hexanediol, 1,6-hexanediol, 2-methyl-1,5-pentanediol, 2-ethyl-1,4-butanediol. Dimethylolcyclohexane, trihydric alcohols, such as trimethylolbutane, tetrahydric alcohols, such as pentaerythritol, such as [sic] more highly polyhydric alcohols, such as di(trimethylolpropane), di(pentaerythritol) and sorbitol.
Examples of suitable carboxylic acids are phthalic acid, isophthalic acid, terephthalic acid and their esterifiable derivatives, such as the anhydrides, for example, provided they exist, and the lower alkyl esters of said acids, such as, for example, methyl, ethyl, propyl, butyl, amyl, hexyl and octyl phthalates, terephthalates and isophthalates. The monoesters, the dialkyl esters and mixtures of these compounds can be employed. Also employable are the corresponding acid halides of these compounds. Preference is given to mixtures of phthalic anhydride, isophthalic acid and adipic acid.
Aliphatic and/or cycloaliphatic diisocyanates are suitable for preparing the urethane acrylate, examples being 1,3-cyclopentane, 1,4-cyclohexane and 1,2-cyclohexane diisocyanate, 4,4′-methylenebis(cyclohexyl isocyanate) and isophorone diisocyanate, trimethylene, tetramethylene, pentamethylene, hexamethylene and trimethylhexamethylene 1,6-diisocyanate, and also the diisocyanates described in EP-A-204 161, column 4, lines 42 to 49, that
Harder Christian
Kluge-Paletta Werner
Kranig Wolfgang
Kreitz Michael
Lobert Martin
BASF Coatings AG
McClendon Sanza L.
Seidleck James J.
LandOfFree
Adhesive paint film does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adhesive paint film, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adhesive paint film will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2481895