Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Phosphorus containing other than solely as part of an...
Reexamination Certificate
2003-01-10
2003-12-16
Rotman, Alan L. (Department: 1626)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Phosphorus containing other than solely as part of an...
C558S183000, C558S303000, C514S129000
Reexamination Certificate
active
06664245
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to adhesive compositions, especially those which are suitable for promoting the bonding of dental restorative materials, especially those that have polymeric components, to tooth enamel, or to tooth dentin or other hard tissues of human body, such as bone. The restorative materials can be polymers, or resins, or can contain polymers or resins in whole, or in part, and comprise materials such as dental composite resins, or methacrylate containing glass ionomer filling materials, or glass ionomer filling materials having ethylenically unsaturated bonds, or they can comprise resin cements.
2. Background of the Invention
The bonding of restorative materials to tooth structure has been an important goal of the dental profession. Such bonding has the benefits of (1) efficiently retaining materials to tooth structure without the need for mechanically locking filling materials into teeth, the latter being a procedure which requires the removal of otherwise healthy tooth structure, and which has been the historical way that materials have been retained, (2) simplifying treatment procedures by eliminating the need for forming precise geometric shapes of teeth when surgical interventions are made, (3) enhancing the quality of interfaces between filling materials by improving the seal between tooth structure and filling materials.
Filling materials in dentistry are generally used to restore teeth to form and function, as well as seal the tooth against oral fluids and bacteria. Directly filling materials are those that are placed in a tooth, and then hardened in the tooth. The most commonly used direct filling polymeric materials are polymer-matrix composite resins, and resin-containing or resin modified glass ionomer filling materials. Compositions for bonding these polymeric materials to tooth structure are especially useful.
Composite resins general comprise a resin matrix, an inorganic filler phase and some coupling agents. The resin matrix generally comprises a monomer system, an initiator system and other stabilizers. The monomer system comprises unsaturated compounds. These compounds generally comprise one or more esters of ethylenically unsaturated carboxylic acids and the adduct of bisphenol A and glycidyl methacrylate (Bis-GMA), such as triethyleneglycol dimethacrylate (TEGDMA), ethyleneglycol dimethacrylate (EGDMA) and 2,2-bis-[4-(2-hydroxy-3-methacrylyloxypropoxy)phenyl]-propane ether (Bis-GMA) in U.S. Pat. No. 3,066,112 to Bowen. Another class of unsaturated materials are urethane dimethacrylates, such as the 1,6-bis(methacrylyloxy-2-ethoxycarbonylamino-2,4,4-trimethylhexane (UEDMA) which is synthesized from 2-hydroxyethyl methacrylate and 2,4,4-trimethylhxamethylenedisocynanate.
When composite resins are placed in a tooth cavity and cured, the hardening (“polymerization”) of the material usually results in shrinkage. This shrinkage leads to marginal gap formation, allowing for the passage of fluid, bacteria, molecules or ions between the restoration and the cavity wall, which may result in secondary caries, marginal discoloration and pulpal damage. The longevity of the restoration will be reduced by this micro-shrinkage. A strong and permanent bond between the wall of the cavity and the restorative will lead to good sealing, and is beneficial.
Bonding to dental surfaces is usually achieved by the use of acid conditioners, primers and adhesive resins. Primers, which can be applied sequentially, or simultaneously with adhesive resins, generally contain one or more polar groups and unsaturated groups. It is assumed that the polar groups will bond either to the inorganic crystal lattice (apatite) portion of tooth structure, or to the polar part of collagen in the tooth, this occurring by chemical or hydrogen bonding, and/or by micromechanical retention due to the formation of a hybrid layer. The hybrid layer, which has been well characterized, is formed by the infiltration of the primer into a demineralized dentin zone, the demineralization having resulted from acid etching of the tooth. The unsaturated groups of the primer will bond with resin overlayers by free radical polymerization. The polar groups are normally a phosphate, an amino acid or amino alcohol, or a dicarboxylic acid.
U.S. Pat. No. 4,368,043 to Yamauchi, incorporated herein by reference, discloses an adhesive cementing agent for the human body. This agent contains a phosphoric or phosphonic acid ester compound, or a high molecular weight compound obtained by polymerizing the compound whether alone or as co-monomer units.
U.S. Pat. No. 4,514,342 to Billington, incorporated herein by reference, describes an adhesion promoter, suitable for improving the adhesion of composite dental material to tooth enamel. This adhesion promoter contains volatile organic solvent and a polyethylenically unsaturated monophosphate or salt, which contains a monophosphate radical and at least three ethylenically unsaturated groups.
A biologically compatible adhesive is disclosed in U.S. Pat. No. 4,657,941 to Blackwell, incorporated herein by reference. This adhesive is shelf stable as a single component adhesive and includes a mixture of an adhesive promoting and polymerizable monomer system. A free radical polymerizable monomer or prepolymer having ethylenic unsaturation and a phosphorus-containing adhesion promoter, having a free radical polymerization catalyst and an accelerator for the catalyst are included in this system.
While the adhesion between filling materials and enamel or dentin of the tooth is improved by usage of an adhesive promoter, some disadvantages, such as not having great bonding strength, or too great a viscosity for handling of some component exists in some adhesives.
SUMMARY OF THE INVENTION
An object of this invention is to provide an adhesive composition, which is suitable for promoting the adhesion of restorative materials to tooth enamel, tooth dentin or other hard tissues of human body.
It is a further object of this invention to provide an adhesive composition which is suitable to be used with other hard tissues of the body.
It is a further object of this invention to provide an adhesive composition, which, when used with other resins, can seal dentinal tubules.
This composition contains a volatile organic solvent and an ethylenically unsaturated monomer and phosphate, which contains a mono-, or di-phosphate radical and at least three ethylenically unsaturated groups.
The preferred solvent is a lower aliphatic alcohol and carbonyl compound. The solution is preferably from 1 to 50% by weight of the total solution of ethylenically unsaturated monomer and phosphate.
The ethylenically unsaturated monomer in the composition is a mono-, di, tri, or multifunctional acrylic monomer, such as 2-hydroxyethyl methacrylate, 1,3-butanediol dimethacrylate, 1,4-butanediol dimethacrylate, or 1,4-butanediol divinyl ether.
The ethylenically unsaturated phosphate is the reaction product of alcohol containing unsaturated allyl ether and phosphorus oxychloride or other phosphorus containing compounds.
A very important aspect of this invention are the novel compounds are represented by following formula:
in which:
R
1
, is a hydrogen atom, alkyl C
1
-C
6
, (preferably C
1
-C
4
when alkyl), or CN,
R is an aliphatic, cycloaliphatic or aryl radical containing from 1 to 10 carbon atoms and having a valence of n+1,
n is an integer from 1 to 5, preferably from 3 to 5, which can be used as a primer for hard tissues.
DETAILED DESCRIPTION OF THE INVENTION
It has been found, in accordance with the present invention, that the adhesion of filling materials to enamel; or to dentin, may be considerably improved by first applying the composition of this invention to prepared dentin or enamel. The preparation procedure can involve the application of an acid to the tooth surface (where bonding is required), a technique which is known as acid-etching, and which is well known in the dental art. On enamel, the treatment of tooth surfaces with acid preferen
Ellis Thomas
Sacher Edward
Stangel Ivan
Xu Jingwei
BioMat Sciences, Inc.
Fitch Even Tabin & Flannery
Rotman Alan L.
Shameem Golam M M
LandOfFree
Adhesive compositions for hard tissues does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adhesive compositions for hard tissues, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adhesive compositions for hard tissues will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3100750