Adhesion of paint to thermoplastic olefins

Stock material or miscellaneous articles – Composite – Of polyamidoester

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S423100, C428S424200, C428S483000, C428S515000, C428S520000, C427S407100, C427S412300

Reexamination Certificate

active

06391461

ABSTRACT:

TECHNICAL FIELD
The invention is directed to a method of improving paint adhesion to thermoplastic olefins.
BACKGROUND OF THE INVENTION
Thermoplastic olefins (TPOs), which typically comprise polypropylene and an elastomer, have many desirable properties, e.g., light weight, durability, low cost, etc., that make them an attractive material of construction for many interior and exterior automotive parts. However, because of their relatively non-polar nature, TPOs do not readily accept paint. Most paints are polar, and thus require a surface with some degree of polarity before it can adhere to the surface with any degree of desirable fastness.
In the past, this problem has been addressed from a number of different directions. One typical and relatively effective method of applying a paint to a relatively low flexural modulus TPO is to first apply a primer to the TPO before applying the paint. Primers, while effective, do add an additional step in the finishing of TPO articles.
In an attempt to reduce costs of automotive parts manufactured from TPOs, high flexural modulus TPOs (flexural modulus above about 1000 MPa) have replaced lower flexural modulus TPOs. In employing the use of high flexural modulus TPO over lower flexural modulus TPOs, a raw materials cost savings can be realized since the part may be made thinner than if made with a low flexural modulus TPO due to the increased relative flexural moduli of the TPOs. However, the paintability of the TPOs typically decrease as flexural modulus increases. Accordingly, the application of a primer to high flexural modulus TPOs has resulted in a relatively moderate paint adhesion level.
Accordingly, it would be desirable to provide a method of improving paint adhesion to TPOs in general and in particular, to high flexural modulus TPOs. It would also be desirable to be able to directly adhere paint to TPOs, and to high flexural modulus TPOs, without requiring the application of a primer to the TPOs.
DISCLOSURE OF THE INVENTION
The present invention relates to a method of improving paint adhesion to thermoplastic olefins (TPOs). The method comprises providing a TPO prepared from a TPO blend comprising maleated polypropylene and amine-terminated polyether. The method further comprises providing a paint having a paint adhesion promoter selected from the group consisting of a chlorinated polyolefin, an olefinic diol, and mixtures thereof. The method further includes applying the paint to the TPO.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention provides a method of improving paint adhesion to TPOs and is particularly well suited for improving paint adhesion to TPOs having a high flexural modulus. TPOs having a “high flexural modulus” are TPOs which have a flexural modulus above about 1000 MPa.
High flexural modulus TPOs are able to be manufactured by known methods such as extrusion, and can be formed into components, by known methods, such as, injection molding, blow molding, compression molding, and extrusion molding, which may be painted as desired.
The TPOs for use with the method of the present invention are modified TPOs. Modified TPOs are prepared from a TPO blend modified by the addition of maleated polypropylene and amine-terminated polyether.
While the method of the present invention provides improved paint adhesion for modified TPOs in general, the method of the present invention has been found to work particularly well with modified high flexural modulus TPOs comprising the reaction product of a blend of the following four components: (a) polypropylene, (b) maleated polypropylene, (c) elastomer, and (d) amine-terminated polyether (Jeffamine) which is a linear or branched polymer of oxypropyleneamine or oxyethyleneamine repeating units. Polyoxyethyleneamine has the chemical formula: NH
2
CH(CH
3
)CH
2
—(OCH
2
CH
2
)
n
—NH
2
and polyoxypropyleneamine has the chemical formula: NH
2
CH(CH
3
)CH
2
—(OCH
2
CH(CH
3
))
n
—NH
2
. The amine-terminated polyether has about 10-50 repeating units (i.e., n= about 10-50). In forming the modified TPO, the four above discussed polymers will be reacted. An example of an amine-terminated polyether usable with the present invention is Jeffamine XTJ-418 from Huntsman Chemical Co. of Houston, Tex.
One reaction which is believed to take place during compounding is between a slight excess of the amine-terminated polyether and the maleated polypropylene, i.e., when the amine-terminated polyether is grafted to the polypropylene. That is the amine end-group of one mole of the amine-terminated polyether reacts with the maleic anhydride functionality of about 1.01 to 1.05 mole of the maleated polypropylene. As is known in the art, a maleated polypropylene has the general chemical formula: CH
3
CH
2
CH
2
—(CH(CH
3
)CH
2
C
4
H
3
O
3
)
n
—with a number average molecular weight of about 10,000 to 60,000, a viscosity of about 35-250 cps at 160° C., a density of about 0.88-0.93 g/cm
3
, and an acid number of 10-45. An example of a maleated polypropylene usable with the present invention is E-43 from Eastman Chemical Co. of Kingsport, Tenn.
Generally, formation of the grafted amine-terminated polyether would take place during mixing of the components in an extruder, but alternatively can be done off-line if it is desired to first separately graft the amine-terminated polyether to the maleated polypropylene. If the latter is carried out, i.e., off line, this grafted amine-terminated polyether would then be compounded with the last two components, the polypropylene and the elastomer, during processing as by extrusion.
Examples of the polypropylene used in the present invention are Exxon Chemical Company Escorene 1042 with a density of about 0.905 g/cm
3
, melt flow rate of about 1.9 dg/10 min, Mn of approximately 67,070, Mw/Mn equal to about 3.51, and flexural modulus equal to about 1240 MPa and Escorene 1105 with a density of about 0.906 g/cm
3
, melt flow rate equal to about 34 dg/10 min, Mn of approximately 48,021, Mw/Mn equal to about 2.58, and a flexural modulus of about 1170 MPa. The fourth polymeric component used to form the TPO is an elastomer, such as Exxon Chemical Company Exact 4033, 3125, and/or 3022 (ethylene-butylene copolymers) having densities of about 0.88 to 0.91 g/cm
3
, melt flow rates of about 1.2 to 9.0 dg/10 min, number average molecular weights of about 23,000 to 50,500, and a Mw/Mn of about 1.95 to 2.65.
Generally, the blends of the four polymeric materials used to form the modified TPO of the present invention comprise, based on the total weight of the blend, about 60 to 90 weight percent polypropylene, about 5 to 15 weight percent maleated polypropylene, 0 to about 6 weight percent amine terminated polyether, and 0 to about 30 elastomer. More preferred are blends with about 65 to 75 weight percent polypropylene, about 10 to 12 weight percent maleated polypropylene, about 4 to 5 weight percent amine-terminated polyether with ethylene oxide repeat units, and about 10 to 20 weight percent ethylene-butylene copolymer elastomer, based on the total weight of the blend. Elastomer content is largely dependent on the required modulus of the TPO formed from the resulting blend, with lower elastomer content being necessary for stiffer materials. The elastomer content of TPO's having a flexural modulus above about 1000 MPa must be below at least about 30 weight percent based on the total weight of the blend prepared for making the TPO.
As would be apparent to those skilled in the art of making plastic materials, other additives such as stabilizers may be included in polymer blends during processing and for long term photochemical stability. For example, such conventionally added materials may include, but are not limited to antioxidants such as sterically hindered phenols, phosphites, phosphonites, sterically hindered amine light stabilizers, and ultraviolet light-absorbers. Additionally, the addition of internal mold release agents such as metal stearates, fatty and wax acids, amides, or esterified polyol esters and lubricants such as thioesters, low molecular

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adhesion of paint to thermoplastic olefins does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adhesion of paint to thermoplastic olefins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adhesion of paint to thermoplastic olefins will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2835909

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.