Adenovirus vectors generated from helper viruses and helper-depe

Chemistry: molecular biology and microbiology – Virus or bacteriophage – except for viral vector or...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4353201, 435440, 435455, 435457, C12N 700, C12N 1563, C12N 1509, C12N 1583

Patent

active

060805692

ABSTRACT:
The present invention provides an improved helper-dependent vector system for production of high capacity adenoviral cloning vectors. The invention makes use of the DNA size packaging constraints imposed on a pIX-defective Ad virion that prevent such virions from packaging DNA larger than approximately 35 kb. This constraint can be used to develop helper viruses that do not package their DNA. In one embodiment, the invention combines this methodology with the Cre-loxP helper-dependent system to decrease the quantity of contaminating helper virus in vector preparations. In another embodiment the invention is used for vector growth.

REFERENCES:
patent: 4510245 (1985-04-01), Cousens et al.
patent: 4797368 (1989-01-01), Carter et al.
patent: 4920209 (1990-04-01), Davis et al.
patent: 4920211 (1990-04-01), Tibbetts et al.
patent: 5670488 (1997-09-01), Gregory et al.
patent: 5882877 (1999-03-01), Gregory et al.
Anton, M., and F. L. Graham, 1995, Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression, J. Virol. 69: 4600-4606.
Araki, K., J. Araki, J. I. Miyazaki, and P. Vassali, 1995, Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc. Nat'l. Acad. Sci. USA 92: 160-164.
Bett, A. J., L. Prevec, and F. L. Graham, 1993, Packaging capacity and stability of human adenovirus type 5 vectos. J. Virol. 67: 5911-5921.
Bett, A. J., W. Haddara, L. Prev, and F. L. Graham, 1994, An efficient and flexible system for construction of adenivorus vectors with insertions or deletions in early region 1 and 3. Proc. Nat'l. Acad. Sci. USA 91: 8802-8806.
C. Caravokyri et al, "Constitutive Episomal Expression of Polypeptide IX (pIX) in a 293-Based Cell Line Complements the Deficiency of pIX Mutant Adenovirus Type 5", J. Of Virology, Nov. 1995, pp. 6627-6633.
Crystal, R. G., N. G. McElvaney, M. A. Rosenfeld, C. S. Chu, A. Mastrangeli, J. G. Hay, S. L. Brody, H. A. Jaffe, N. T. Eissa, and C. Danel. 1994. Administration of an adenivorus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis, Nature Genetics 8: 42-51.
DiSanto, J. P., W., Mueller, D. Guy-Grand, A. Fischer, and K. Rajewsky, 1995, Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor chain, Proc. Nat'l. Acad. Sci. USA 92: 377-381.
Gage, P.J., B. Sauer, M. Levin and J.C. Glorioso. 1992. A cell-free recombination system for site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome. J. Virol. 66:5509-5515.
Graham, F. L. and L. Prevec. 1991. Manipulation of adenovirus vectors. In Murray E.J. (ed.), Methods in Molecular Biology. The Humana Press Inc. Clifton, N.J. vol. 7 (Gene Transfer and Expression Protocols): 109-128.
Graham F.L. and L. Prevec. 1992. Adenovirus-based expression vectors and recombinant vaccines in: Vaccines; New Approaches in Immunological Problems., ed. Ellis, R.W. Butterworth-Heinemann, Boston, MA: 363-390.
Graham F. L., J. Smiley, W. C. Russel and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5., J. Gen. Virol. 36: 59-72.
Graham, F. L., 1987. Growth of 293 cells in suspension culture. J. Gen. Virol. 68: 937-940.
Gu, H., J. D. Marth, P.C. Orban, H. Mossmann and K. Rajewsky. 1994. Deletion of a DNA polymerase B gene segment in T cells using cell type-specific gene targeting. Science 265: 103-106.
M. Levero et al., Defective andnondefective adenovirus vectors for expressing foreign genes in vitro and in vivo, Gene. 101 (1991) pp. 195-202.
Metzger, D., J. Clifford, H. Chiba and P. Chambon. 1995. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre protein. Proc. Nat'l. Acad. Sci. USA 92: 6991-6995.
Mittal, S.K., McDermott, M.R., Johnson, D.C., Prevec, L. and F. L. Graham. 1993. Monitoring foreign gene expression by a human adenovirus-based vector using the firefly luciferase gene as a reporter, Virus Research, 28: 67-90.
Pichel, J. G., Lasko, and H. Westphal. 1993. Timing of SV40 oncogene activation by site-specific recombination determines subsequent tumor progression during murine less development. Oncogene 8: 3333-3342.
Sauer, B. 1994. Site-specific recombination: developments and applications. Cur. Opin. Biotech. 5: 521-527.
Sauer, B. and N. Henderson. 1989. Cre-stimulated recombination of loxP-containing DNA sequences placed into the mammalian genome. Nucl. Acids Res. 17: 147-161.
Sauer, B., and N. Henderson. 1990. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. The New Biologist 2: 441-449.
Sauer, B., M. Whealy, A. Robbins and L. Enquist. 1987. Site-specific insertion of DNA into a pseudorabies virus vector. Proc. Nat'l. Adac. Sci. USA 84: 9108-9112.
Smith A. J. H., M. A. DeSousa, B. Kwabi-Addo, A. Heppell-Parton, H. Impey, and P. Rabbits. 1995. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nature Genetics 9: 376-385.
Sternberg, N., B. Sauer, R. Hoess, and K. Abremski. 1986. Bacteriophase P1 cre gene and its regulatory region; Evidence for multiple promotors and for regulation by DNA methylation, J. Mol. Biol. 187: 197-212.
Van Deursen, J., M. Fornerod, B. Van Ress, and G. Grosveld. 1995. Cre-mediated site specific translocation between non-homologous mouse chromosomes. Proc. Nat'l. Acad. Sci. USA 92: 7376-7380.
Hanke, T., Frank L. Graham, Kenneth L. Rosenthal and David C. Johnson. 1991. Identification of an immunodomimant cytotoxic t-lymphocyte recognition site in glycoprotein B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. 1991. J. of Virology, 65: 1177-1186.
Quantin, B., Leslie D. Pericaudet, Shahragim Tajbakhsh and Jean-Louis Mandel. 1992. Adenovirus as an expression vector in muscle cells in vivo. Proc. Nat'l. Acad. Scie. 89: 2581-2584.
Rosenfeld, M.A. et al., 1992. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium, Cell. 68: 143-155.
W. J. McGrory, D. S. Baulista and F. L. Graham. 1988. A simple technique for the resue of early region 1 mutations into infectious human adenovirus type 5, Virology 163: 614-617.
Wang, P., Anton, F. L. Graham and S. Bacchetti. High Frequency recombination between loxP sites in human chromosomes mediated by an adeniovorus vector expressing Cre recombinase. Submitted for publication.
Goutam Ghosh-Choudhury et al., "Human adenovirus cloning vectors based on infectious bacterial plasmids", Gene, 50 1986, pp. 161-171.
K.L. Berkner and P.A. Sharp, "Generation of Adenovirus by Transfection of Plasmids", Nucleic Acids Research, 11(17), 1983, pp. 6003-6020.
Y. Haj-Ahmad and F.L. Graham, "Development of a Helper-Independent Human Adenovirus Vector and its Use in the Transfer of the Herpes Simplex Virus Thymidine Kinase Gene", Journal of Virology, 57(1), 1986, pp. 267-274.
N. Jones and T. Shenk, "Isolation of Adenovirus Type 5 Host Range Deletion Mutants Defective for Transformation of Rat Embryo Cells", Cell, 17, 1979, pp. 683-689.
D.S. Bautista et al, "Isolation and Characterization of Insertion Mutants in E1A of Adenovirus Type 5", Virology, 182, 1991, pp. 578-596.
F.L. Graham, "Covalently Closed Circles of Human Adenovirus DNA are Infectious", The EMBO Journal 3(12), 1984, pp. 2917-2922.
M. Ruben et al, "Covalently Closed Circles of Adenovirus 5 DNA", Nature, 301, 1983, pp. 172-174.
P. Hearing et al, "Identification of a Repeated Sequence Element Required to Efficient Encapsidation of the Adenovirus Type 5 Chromosome", Journal of Virology, 61(8), 1987, pp. 2555-2558.
N.D. Stow, "The Infectivity of Adenovirus Genomes Lacking DNA Sequences from their Left-hand Termini", Nucleic Acids Research, 10(17), 1982, pp. 5105-5119.
Hodgson, Exp Opin Ther. Patents 5(5),459-468.
Orkin et al., Report and Recommendations . . . Gene Therapy. NIH Press. Dec. 7, 1995, p. 1-40.
Miller et al., FASEB, vol. 9, 190-199.
Marshall, Science.269, 1050-1055.
Culver et al., TIG. 1

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adenovirus vectors generated from helper viruses and helper-depe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adenovirus vectors generated from helper viruses and helper-depe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adenovirus vectors generated from helper viruses and helper-depe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1783399

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.