Adenovirus-mediated intratumoral delivery of an angiogenesis...

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Genetically modified micro-organism – cell – or virus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S04400A, C435S455000, C435S456000, C435S320100

Reexamination Certificate

active

06638502

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to gene therapy for the treatment of tumors. The invention more particularly relates to introduction of a gene encoding an anti-angiogenic factor into cells of a tumor, for example with an adenovirus vector, to inhibit growth or metastasis, or both, of the tumor.
BACKGROUND OF THE INVENTION
Cell migration is a coordinated process that bridges cellular activation and adhesion whereas the equilibrium between pericellular proteolysis and its inhibition (e.g., triggered by plasminogen activator inhibitors and tissue inhibitors of metalloproteinases) is disrupted (1-3). Urokinase plasminogen activator (uPA) is a pivotal player in this process because it initiates a proteolytic cascade at the surface of migrating cells by binding to its cell surface receptor (uPAR) (4, 5). Binding of uPA to its receptor greatly potentiates plasminogen/plasmin conversion at the cell surface (6). Plasmin is a broadly specific serine protease which can directly degrade components of the extracellular matrix such as fibronectin, vitronectin or laminin. Plasmin also indirectly promotes a localized degradation of the stroma by converting inactive zymogens into active metalloproteinases (7). The selective distribution of uPAR at the leading edge of migrating cells (invadopodes) apparently concentrates uPA secreted by themselves or by neighboring stroma cells (8). uPAR is also directly involved in cellular adhesion to the extracellular matrix as illustrated by its uPA-dependent binding to vitronectin (9), and because uPAR modulates the binding properties of several integrin molecules (10). Finally, uPA and plasmin are somehow involved in cell morphogenesis by activating or inducing the release of morphogenic factors such as vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factors (FGFs) and transforming growth factor &bgr; (TGF&bgr;) (11, 12).
Taken together, these observations indicate that the uPA/uPAR system controls cell migration by coordinating cellular activation, adhesion and motility. This statement is supported by clinical observations that correlate the presence of enhanced uPA activity at the invasive edge of the tumors (13, 14). That melanoma induced by DMBA and croton oil do not progress to a malignant stage in uPA-deficient mice also support a role of uPA in tumor establishment and progression (15).
uPA binds to uPAR by its light chain fragment, also known as amino-terminal fragment (ATF, amino acid 1-135). This interaction is species restricted (16) and involves the EGF-like domain of ATF (residues 1-46), in which amino acid 19-32, which are not conserved between mice and human, are critical (17, 18). ATF-mediated disruption of the uPA/uPAR complex inhibits tumor cell migration and invasion in vitro (19). Intraperitoneal bolus injection of a chimeric human ATF-based antagonist has also been used to inhibit lung metastases of human tumor cells implanted within athymic mice, without significantly affecting primary tumor growth (20). A further study reported that intraperitoneal injection of synthetic peptides derived from murine ATF was effective in inhibiting both primary tumor growth and lung metastases (21). These results are consistent with a role of the uPA/uPAR complex in controlling the motility of both tumor and endothelial cells (22). That a chimeric murine ATF-based antagonist could inhibit vessel growth in an artificial bFGF-enriched extracellular matrix (23) further supports uPA/uPAR involvement in controlling angiogenesis in vivo.
The formation of blood vessels, or angiogenesis, results from the capillary growth of pre-existing vessels. Angiogenesis is essential for a number of physiological processes such as embryonic development, wound healing and tissue or organ regeneration. Abnormal growth of new blood vessels occurs in pathological conditions such as diabetic retinopathy and tumor growth, as well as tumor dissemination to distant sites [38,24]. Both experimental and clinical studies have showed that primary tumors as well as metastasis remain dormant due to a balanced rate of proliferation and apoptosis unless the angiogenesis process is switched on [39].
The growth of endothelial cells is tightly regulated by both positive and negative factors. The onset of tumor angiogenesis could be triggered either by an upregulation of tumor-released angiogenic factors such as vascular endothelial growth factor (VEGF) and acid or/and basic fibroblast growth factor (bFGFs), or by a downregulation of angiostatic factors such as thrombospondin and angiostatin [39]. Both the reconstitution of angiostatic factors and the removal of angiogenic stimulating factors thus constitute plausible clinical strategies to suppress tumor angiogenesis [40, 41]. Angiostatic-based therapies should also apply to all solid tumors because endothelial cells do not vary from one tumor type to the other, further emphasizing the clinical relevance of such an anti-cancer approach. Thus, the therapy targeting angiogenesis appears to be highly relevant to clinical practice.
Many physiological angiostatic factors are derived upon proteolytic cleavage of circulating proteins. This is the case for angiostatin [32], endostatin [42], the 16 kDa fragment of prolactin [43], or platelet factor-4 [44]. Angiostatin was initially isolated from mice bearing a Lewis lung carcinoma (LLC), and was identified as a 38 kDa internal fragment of plasminogen (Plg) (aa 98-440) that encompasses the first four kringles of the molecule [32; WO95/29242; U.S. Pat. No. 5,639,725]. Angiostatin has been shown to be generated following hydrolysis of Plg by a metalloelastase from GM-CSF-stimulated tumor-infiltrating macrophages [45]. Intraperitoneal bolus injections of purified angiostatin in six different tumor models have proved to be very effective in suppressing primary tumor growth, with no apparent toxicity [46]. Angiostatin-mediated suppression of tumor angiogenesis apparently drove the tumor cells into a higher apoptotic rate that counterbalanced their proliferation rate. In this study, tumor growth usually resumed following removal of the angiostatin molecule, emphasizing the importance of achieving long-term delivery for optimal clinical benefits [46]. In vitro studies with recombinant proteins indicated that the angiostatic activity of angiostatin was mostly mediated by kringles 1-3, thus leaving a minor activity for kringle 4 [47]. As for most angiostatic factors, little is known about the molecular pathway by which angiostatin exerts its effect.
As angiostatic therapy will require a prolonged maintenance of therapeutic levels in vivo, the continuous delivery of a recombinant protein will be expensive and cumbersome. Direct in vivo delivery of the corresponding genes with viral vectors constitutes an attractive solution to this problem. Because most cancer gene therapies currently rely on destructive strategies that target the tumor cells [48], viral-mediated gene delivery of an angiostatic factor represents a conceptually different, and possibly synergistic, approach to fight cancer.
Despite these results, there remains a need to develop effective treatments for tumors, particularly chemotherapy-resistant tumors.
The present invention addresses this need by establishing an effective mode for treating a tumor.
Various references are cited in this specification by number, which are fully set forth after the Examples. None of the references cited herein should be construed as describing or suggesting the invention disclosed herein.
SUMMARY OF THE INVENTION
The present invention advantageously provides a highly effective gene therapy for tumors. Indeed, in a specific embodiment of the invention murine urokinase ATF expressed by human tumor cells in an athymic murine model unexpectedly effectively inhibits tumorigenicity. In another embodiment, angiostatin expressed in tumor cells in a murine model inhibite

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adenovirus-mediated intratumoral delivery of an angiogenesis... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adenovirus-mediated intratumoral delivery of an angiogenesis..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adenovirus-mediated intratumoral delivery of an angiogenesis... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3131462

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.