Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage
Patent
1997-08-25
1999-12-14
Guzo, David
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving virus or bacteriophage
435 6, 435 914, 4353201, 435325, 435239, 435366, 435367, 435368, 435369, 530300, C12Q 170, C12N 1586, C12N 1564
Patent
active
060015578
DESCRIPTION:
BRIEF SUMMARY
FIELD OF THE INVENTION
The present invention relates to the field of vectors useful in somatic gene therapy and the production thereof.
BACKGROUND OF THE INVENTION
Human gene therapy is an approach to treating human disease that is based on the modification of gene expression in cells of the patient. It has become apparent over the last decade that the single most outstanding barrier to the success of gene therapy as a strategy for treating inherited diseases, cancer, and other genetic dysfunctions is the development of useful gene transfer vehicles. Eukaryotic viruses have been employed as vehicles for somatic gene therapy. Among the viral vectors that have been cited frequently in gene therapy research are adenoviruses.
Adenoviruses are eukaryotic DNA viruses that can be modified to efficiently deliver a therapeutic or reporter transgene to a variety of cell types. Recombinant adenoviruses types 2 and 5 (Ad2 and Ad5, respectively), which cause respiratory disease in humans, are currently being developed for gene therapy. Both Ad2 and Ad5 belong to a subclass of adenovirus that are not associated with human malignancies. Recombinant adenoviruses are capable of providing extremely high levels of transgene delivery to virtually all cell types, regardless of the mitotic state. High titers (10.sup.13 plaque forming units/ml) of recombinant virus can be easily generated in 293 cells (the adenovirus equivalent to retrovirus packaging cell lines) and cryo-stored for extended periods without appreciable losses. The efficacy of this system in delivering a therapeutic transgene in vivo that complements a genetic imbalance has been demonstrated in animal models of various disorders [Y. Watanabe, Atherosclerosis, 36:261-268 (1986); K. Tanzawa et al, FEBS Letters, 118(1):81-84 (1980); J.L. Golasten et al, New Engl. J. Med., 309(11983):288-296 (1983); S. Ishibashi et al, J. Clin. Invest., 92:883-893 (1993); and S. Ishibashi et al, J. Clin. Invest., 93:1885-1893 (1994)]. Indeed, a recombinant replication defective adenovirus encoding a cDNA for the cystic fibrosis transmembrane regulator (CFTR) has been approved for use in at least two human CF clinical trials [see, e.g., J. Wilson, Nature, 365:691-692 (Oct. 21, 1993)]. Further support of the safety of recombinant adenoviruses for gene therapy is the extensive experience of live adenovirus vaccines in human populations.
Human adenoviruses are comprised of a linear, approximately 36 kb double-stranded DNA genome, which is divided into 100 map units (m.u.), each of which is 360 bp in length. The DNA contains short inverted terminal repeats (ITR) at each end of the genome that are required for viral DNA replication. The gene products are organized into early (E1 through E4) and late (L1 through L5) regions, based on expression before or after the initiation of viral DNA synthesis [see, e.g., Horwitz, Virology, 2d edit., ed. B. N. Fields, Raven Press, Ltd. New York (1990)].
The first-generation recombinant, replication-deficient adenoviruses which have been developed for gene therapy contain deletions of the entire E1a and part of the E1b regions. This replication-defective virus is grown on an adenovirus-transformed, complementation human embryonic kidney cell line containing a functional adenovirus E1a gene which provides a transacting E1a protein, the 293 cell [ATCC CRL1573]. E1-deleted viruses are capable of replicating and producing infectious virus in the 293 cells, which provide E1a and E1b region gene products in trans. The resulting virus is capable of infecting many cell types and can express the introduced gene (providing it carries its own promoter), but cannot replicate in a cell that does not carry the E1 region DNA unless the cell is infected at a very high multiplicity of infection.
However, in vivo studies revealed transgene expression in these E1 deleted vectors was transient and invariably associated with the development of severe inflammation at the site of vector targeting [S. Ishibashi et al, J. Clin. Invest., 93:1885-1893 (1994); J. M. Wilson et a
REFERENCES:
patent: 5166320 (1992-11-01), Wu et al.
patent: 5240846 (1993-08-01), Collins et al.
patent: 5252479 (1993-10-01), Srivastava
patent: 5543328 (1996-08-01), McClelland
patent: 5652224 (1997-07-01), Wilson et al.
Y. Watanabe, "Serial Inbreeding of Rabbits with Hereditary Hyperlipidemia (WHHL-Rabbit)", Atherosclerosis, 36:261-268 (1980).
K. Tanzawa et al., "WHHL-Rabbit: A Low Density Lipoprotein Receptor-Deficient Animal Model for Familial Hypercholesterolemia", FEBS Letters, 118(1):81-84 (Aug., 1980).
J. Goldstein et al, "Defective Lipoprotein Receptors and Atherosclerosis--Lessons form an Animal Counterpart of Familial Hypercholesterolemia", New Eng. J. Med., 309(5):288-296 (Aug. 4, 1983).
S. Ishibashi et al, "Hypercholesterolemia in Low Density Lipoprotein Receptor Knockout Mice and its Reversal by Adenovirus -mediated Gene Delivery", J. Clin. Invest., 92:883-893 (Aug., 1993) [Ishibashi I].
S. Ishibashi et al, "massive Xathomatosis and Atherosclerosis in Cholesterol-fed Low Density Lipoprotein Receptor-negative Mice", J. Clin. Invest., 93:1885-1893 (May, 1994) [Ishibashi II].
J. Wilson, "Cystic Fibrosis--Vehicles for Gene Therapy", Nature, 365:691-692 (Oct. 21, 1993) [Wilson I].
M. Horwitz, "Adenoviridae and Their Replication", Virology, 2d edition, ed. B. N. Fields, Raven Press, Ltd., New York, Chapter 60, pp. 1679-1721 (1990).
Y. Yang et al., "Cellular Immunity to Viral Antigens Limits E1-deleted Adenoviruses for Gene Therapy", Proc. Natl. Acad. Sci. USA, 91:4407-4411 (May, 1994).
J. Wilson et al, "Correction of the Genetic Defect in Hepatocytes for the Watanabe Heritable Hyperlipidemic Rabbit", Proc. Natl. Acad. Sco. USA, 85:4421-4425 (Jun., 1988) [Wilson II].
J. Wilson et al., "Research Article--Transplantation of Allogeneic Hepatocytes into LDL Receptor Deficient Rabbits Leads to Transient Improvement in Hypercholesterolemia", Clin. Bio., 3:21-26 (Spring, 1991) [Wilson II].
M. Grossman et al., "Towards Liver-Directed Gene Therapy: Retrovirus-Mediated Gene Transfer into Human Hepatocytes", Som. Cell. And Mol. Gen., 17(6):601-607 (Nov., 1991).
M. Boshart et al., "A Very Strong Enhancer is Located Upstream of an Immediate Early Gene of Human Cytomegalovirus", Cell, 41:521-530 (Jun., 1985).
C. Wu et al, "Targeting Genes: Delivery and Persistent Expression of a Foreign Gene Driven by Mammalian Regulatory Elements in Vivo", J. Biol. Chem., 264(29):16985-16987 (Oct. 15, 1989).
K. Fisher et al., "Biochemical and Functional Analysis of an Adenovirus-Based Ligand Complex for Gene Transfer", Biochem. J. 229:49-58 (Apr. 1, 1994).
K. Kozarsky et al., "In Vivo Correction of Low Density Lipoprotein Receptor Deficiency in the Watanabe Heritage Hyperlipidemic Rabbit with Recombinant Adenoviruses", J. Biol. Chem., 269(18):13695-13702 (May 6, 1994).
C. Laughlin et al., "Cloning of Infectious Adeno-associated Virus Genomes in Bacterial Plasmids", Gene, 23:65-73 (Jul., 1983).
J. Price et al., "Lineage Analysis in the Vertebrate Nervous System by Retrovirus-mediated Gene Transfer", Proc. Natl. Acad. Sci. USA, 84156-160 (Jan., 1987).
J. Wilson et al., "A Novel Mechanism for Achieving Transgene Persistence in Vivo after Somatic Gene Transfer into Hepatocytes", J. Biol. Chem., 267(16):11483-11489 (Jun. 5, 1992) [Wilson IV].
T. Kost et al, "The Nucleotide Sequence of the Chick Cytoplasmic .beta.-actin Gene", Nucl. Acids Res., 11(23):8287-8301 (Dec. 11, 1983).
J. Schreiber et al, "Recombinant Retroviruses Containing Novel Reporter Genes", BioTechniques, 14(5):818-823 (May, 1993).
J. Riordan et al, "Identification of the Cystic Fibrosis Gene: Cloning and Characterization of Complementary DNA", Science, 245:1066-1073 (Sep. 8, 1989).
M. Brown et al, "A Receptor-Mediated Pathway for Cholesterol Homeostatis", Science, 232:34-46 (Apr. 4, 1986).
T. Yamamoto et al, "The Human LDL Receptor: A Cysteine-Rich Protein with Multiple Alu Sequences in its mRNA", Cell, 39:27-38 (Nov., 1984).
R. Samulski et al, "Helper-Free Stocks of Recombinant Adeno-Associated Viruses: Normal Integ
Chen Shu-Jen
Fisher Krishna J.
Weitzman Matthew
Wilson James M.
Guzo David
The Trustees of the University of Pennsylvania
LandOfFree
Adenovirus and methods of use thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adenovirus and methods of use thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adenovirus and methods of use thereof will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-861806