Adeno-associated virus vectors

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Genetically modified micro-organism – cell – or virus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C435S069100, C435S091400, C435S091410, C435S455000, C435S456000, C435S457000, C424S093100, C424S093600

Reexamination Certificate

active

06436392

ABSTRACT:

BACKGROUND OF THE INVENTION
Adeno-associated virus (AAV) is a non-pathogenic parvovirus with a single-stranded DNA genome of 4680 nucleotides. The genome may be of either plus or minus polarity, and codes for two groups of genes, Rep and Cap (Berns et al., 1990). Inverted terminal repeats (ITRs), characterized by palindromic sequences producing a high degree of secondary structure, are present at both ends of the viral genome. While other members of the parvovirus group replicate autonomously, AAV requires co-infection with a helper virus (i.e., adenovirus or herpes virus) for lytic phase productive replication. In the absence of a helper virus, wild-type AAV (wtAAV) establishes a latent, non-productive infection with long-term persistence by integrating into a specific locus on chromosome 19, AAVS1, of the host genome through a Rep-facilitated mechanism (Samulski, 1993; Linden et al., 1996; Kotin et al., 1992).
In contrast to wtAAV, the mechanism(s) of latent phase persistence of recombinant AAV (rAAV) is less clear. rAAV integration into the host genome is not site-specific due to deletion of the AAV Rep gene (Ponnazhagan et al., 1997). Analysis of integrated proviral structures of both wild type and recombinant AAV have demonstrated head-to-tail genomes as the predominant structural forms. rAAV has recently been recognized as an extremely attractive vehicle for gene delivery (Muzyczka, 1992). rAAV vectors have been developed by substituting all viral open reading frames with a therapeutic minigene, while retaining the cis elements contained in two inverted terminal repeats (ITRs) (Samulski et al., 1987; Samulski et al., 1989). Following transduction, rAAV genomes can persist as episomes (Flotte et al., 1994; Afione et al., 1996; Duan et al., 1998), or alternatively can integrate randomly into the cellular genome (Berns et al., 1996; McLaughlin et al., 1988; Duan et al., 1997; Fisher-Adams et al., 1996; Kearns et al., 1996; Ponnazhagan et al., 1997). However, little is known about the mechanisms enabling rAAV vectors to persist in vivo or the identity of cellular factors which may modulate the efficiency of transduction and persistence. Although transduction of rAAV has been demonstrated in vitro in cell culture (Muzyczka, 1992) and in vivo in various organs (Kaplitt et al., 1994; Walsh et al., 1994; Conrad et al., 1996; Herzog et al., 1997; Snyder et al., 1997), the mechanisms of rAAV-mediated transduction remain unclear.
Moreover, while rAAV has been shown to be capable of stable, long-term transgene expression both in vitro and in vivo in a variety of tissues, the transduction efficiency of rAAV is markedly variable in different cell types. For example, rAAV has been reported to transduce lung epithelial cells at low levels (Halbert et al., 1997; Duan et al., 1998a), while high level, persistent transgene expression has been demonstrated in muscle, neurons and in other non-dividing cells (Kessler et al., 1996; Fisher et al., 1997; Herzog et al., 1997; Xiao et al., 1996; Kaplitt et al., 1994; Wu et al., 1998; Ali et al., 1996; Bennett et al., 1997 Westfall et al., 1997). These tissue-specific differences in rAAV mediated gene transfer may, in part, be due to variable levels of cellular factors affecting AAV infectivity (i.e., receptors and co-receptors such as heparin sulfate proteoglycan, FGFR-1, and &agr;V&bgr;5 integrin) (Summerford et al., 1998; Qing et al., 1999; Summerford et al., 1999) as well as the latent life cycle (i.e., nuclear trafficking of virus and/or the conversion of single stranded genomes to expressible forms) (Qing et al., 1997; Qing et al., 1998).
Muscle-mediated gene transfer represents a very promising approach for the treatment of hereditary myopathies and several other metabolic disorders. Previous studies have demonstrated remarkably efficient and persistent transgene expression skeletal muscle in vivo with rAAV vectors. Applications in this model system include the treatment of several inherited disorders such as Factor IX deficiency in hemophilia B and epo deficiencies (Kessler et al., 1996; Herzog et al., 1997). Although the conversion of low-molecular-weight rAAV genomes to high-molecular-weight concatamers has been inferred as evidence for integration of proviral DNA in the host genome, no direct evidence exists in this regard (Xiao et al., 1996; Clark et al., 1997; Fisher et al. 1997). Also, the molecular processes and/or structures associated with episomal long-term persistence of rAAV genomes, e.g., in nondividing mature myofibers, remains unclear.
Thus, there is a need for rAAV vectors that have increased stability and/or persistence in host cells. Moreover, there is a need for vectors useful to express large open reading frames.
SUMMARY OF THE INVENTION
The present invention provides a recombinant adeno-associated virus (rAAV) vector comprising a nucleic acid segment formed by the juxtaposition of sequences in the AAV inverted terminal repeats (ITRs) which are present in a circular intermediate of AAV. The circular intermediate was isolated from rAAV-infected cells by employing a recombinant AAV “shuttle” vector. The shuttle vector comprises: a) a bacterial origin of replication; b) a marker gene or a selectable gene; c) a 5′ ITR; and d) a 3′ ITR. Preferably, the recombinant AAV shuttle vector contains a reporter gene, e.g., a GFP, alkaline phosphatase or &bgr;-galactosidase gene, a selectable marker gene, e.g., an ampicillin-resistance gene, a bacterial origin of replication, a 5′ ITR and a 3′ ITR. The vector is contacted with eukaryotic cells so as to yield transformed eukaryotic cells. Low molecular weight DNA (“Hirt DNA”) from the transformed eukaryotic cells is isolated. Bacterial cells are contacted with the Hirt DNA so as to yield transformed bacterial cells. Then bacterial cells are identified which express the marker or selectable gene present in the shuttle vector and which comprise at least a portion of a circular intermediate of adeno-associated virus. Also, as described below, it was found that circularized intermediates of rAAV impart episomal persistence to linked sequences in Hela cells, fibroblasts and muscle cells. In HeLa cells, the incorporation of certain AAV sequences, e.g., ITRs, from circular intermediates into a heterologous plasmid conferred a 10-fold increase in the stability of plasmid-based vectors in HeLa cells. Unique features of these transduction intermediates included the in vivo circularization of a head-to-tail monomer as well as multimer (concatamers) episomal viral genomes with associated specific base pair alterations in the 5′ viral D-sequence. The majority of circular intermediates had a consistent head-to-tail configuration consisting of monomer genomes (<3 kb) which slowly converted to large multimers of >12 kb by 80 days post-infection in muscle. Importantly, long-term transgene expression was associated with prolonged (80 day) episomal persistence of these circular intermediates. Thus, in vivo persistence of rAAV can occur through episomal circularized genomes which may represent prointegration intermediates with increased episomal stability. Moreover, as described below, co-infection with adenovirus, at high multiplicities of infection (MOI) capable of producing early adenoviral gene products, led to increases in the abundance and stability of AAV circular intermediates which correlated with an elevation in transgene expression from rAAV vectors. Thus, these results demonstrate the existence of a molecular structure involved in AAV transduction which may play a role in episomal persistence and/or integration.
Further, these results may aid in the development of non-viral or viral-based gene delivery systems having increased efficiency. For example, therapeutic or prophylactic therapies in which the present vectors are useful include blood disorders (e.g., sickle cell anemia, thalassemias, hemophilias, and
Fanconi anemias
), neurological disorders, such as Alzheimer'sdisease and Parkinson'sdisease, and muscle disorders involving skeletal, cardia

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adeno-associated virus vectors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adeno-associated virus vectors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adeno-associated virus vectors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2880951

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.