Additive transfer film suitable for cook-in end use

Stock material or miscellaneous articles – Hollow or container type article – Flexible food casing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S035200, C428S035700, C428S423500, C428S423700, C428S424200, C428S474400, C428S478200, C428S481000, C428S516000, C428S518000, C428S519000, C428S520000, C428S521000, C428S532000, C426S090000, C426S127000, C426S129000

Reexamination Certificate

active

06667082

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to multilayer films, and methods of using same, especially to produce a packaged food product comprising cooked meat having a flavorant and/or fragrance and/or odor absorbent and/or colorant and/or antimicrobial, and/or antioxidant, and/or chelating agent therewith.
BACKGROUND OF THE INVENTION
The food packaging industry uses packaging films from which bags and casings are made which are such that they may be used in cook-in applications, i.e., uses in which a food product is packaged in the film, following which the food product is cooked while packaged in the film. The term “cook-in,” as used herein with respect to packaging materials such as films, refers to packaging material structurally capable of withstanding exposure to cook-in time-temperature conditions while surrounding a food product. Cook-in foods are foods cooked in the package. The cooked product can be distributed to the customer in the original bag or the bag removed and the meat portioned for repackaging. Cook-in time-temperature conditions typically refer to a long slow cook, for example submersion in hot water at 131 ° F. to 149° F. for 12 hours. However, cook-in can include submersion at from 135° F. to 212° F. for 2-12 hours, or from 158° F. to 212° F. for from 1-4 hours.
During cook-in, the package should maintain seal integrity, i.e., any heat-sealed seams should resist being pulled apart during cook-in. Preferably, the film is heat sealable to itself Additionally, the packaging film substantially conforms to the packaged food product. Preferably, this substantial conformability is achieved by the film being heat shrinkable under these conditions so as to form a tightly fitting package. In other words, in an advantageous embodiment, the film is heat-shrinkable under time-temperature conditions of cook-in, i.e., the film possesses sufficient shrink energy such that submerging the packaged food product in hot water will shrink the packaging film snugly around the packaged product, representatively up to about 55% monoaxial or biaxial shrinkage at 185° F. Also, during cook-in the film should have food product adherence to restrict “cook-out,” i.e., the collection of juices between the surface of the contained food product and the meat-contact surface of the packaging material, cook-out is commonly referred to as “purge.” In this manner, product yield is increased by the food product retaining moisture, and the aesthetic appearance of the packaged product is not diminished by the presence of the purge.
For ham, beef, turkey, and other meat products, it is often desirable to expose the surface of the meat product to an additive, to simply coat or even suffuse the additive into the surface of the meat product. The additive can be, for example, a colorant or flavorant. The use of a smoke-containing additive is particularly common, the smoke providing both a flavor effect and a color effect to the meat product.
If the surface of the product is to be exposed to an additive, for example to produce a smoked meat product, it has for some time been standard practice in the industry to first package the meat product in a film, followed by cooking the meat product while it is packaged, followed by removing the cooked meat from the package and placing the meat in a smokehouse to impart smoke coloration and flavor. The smoked meat product is thereafter repackaged in another film, and shipped to a wholesaler, retailer, or consumer.
In addition, the unpackaging, smoking, and repackaging of the cooked meat product exposes the cooked meat product to microbial contamination, resulting in shorter shelf life for the cooked meat product. However, the need to unpackage, smoke, and repackage the meat product is a labor intensive, expensive process for the manufacturer of the smoked cooked meat product. Furthermore, the smoking step is inefficient in that only about 70% of the smoke is effective as a flavorant/colorant, with the remaining 30% of the smoke accumulating on non-food surfaces in the smokehouse, necessitating cleaning, etc. and generating waste.
Thus, it would be desirable to provide a packaged product without having to package, cook, unpackage, smoke, and repackage, together with avoiding the handling required for each of these operations. It would be desirable to entirely avoid the need to unpackage and repackage and thereby avoid the potential for microbiological contamination, together with avoiding the waste from discarding the original package, the inefficiency and waster from the smoking in a smokehouse, as well as to avoid the lower shelf life of the finally-packaged product, resulting from microbiological contamination due to excess handling of the cooked meat product.
SUMMARY OF THE INVENTION
The present invention solves the longstanding problem described above, by providing a film which can be coated with an additive which is transferred to a product during cook-in, while avoiding the handling, waste, inefficiency, and contamination generated by the steps of unpackaging, smoking, and repackaging in accordance with the prior art. Moreover, during cooking of a food product surrounded by the film, the binder and additive are both transferred from the film to the food product. After cooking, the film can be stripped off of the food product cleanly (less the binder and additive, which are transferred to the food), i.e., without any food (meat) pull-off, even though the coating prevents or reduces purge. Thus, the film according to the invention is capable of being used during cook-in to prevent or reduce purge, provide a uniform transfer of additive(s) to the surface of the meat product, while at the same time allowing a clean separation of the cooked food (especially meat) from the film, without tear-off.
In addition, the film of the present invention can be easily manufactured, i.e., the additive-containing coating can be applied to the film using coating or printing technology, such as gravure coating or printing, lithographic coating or printing, etc. The coating can be printed onto the film in the pattern of the product or a portion of the product, while avoiding printing the coating onto areas to be sealed. The film of the present invention is also more efficient than, for example, application of smoke to meat in a smokehouse, because substantially all of the liquid smoke coating is transferred to the meat, without waste. The film is also dry, so that it can be prepared with the additive(s) present, and stored before use, unlike films which have a wet coating thereon.
The present invention resulted from the discovery that films can be uniformly coated with certain binders in a form which are not quick to become hydrated or dissolved at the conditions of use. That is, the invention resulted from the discovery of binders which, together with crosslinkers, control the initial adhesion of the additive to the film, reduce the rate of hydration of the coating and the release of the additive, and further the binding of the coating to, for example, a cooked meat product during the cooking step. The result is that the additive-containing coating is present on the film in a form which prevents or reduces smearing of the coating when, for example, a coated film casing is filled with the meat product or flowing of the additive during cooking of the product, i.e. resulting in a mottled distribution of the additive. It was also discovered that the binder holds an additive which is released during cook-in, so that the meat product is flavored/colored in a desired manner and degree, without having to unpackage, treat, and repackage the product. In this manner, the shelf life of the resulting packaged product is increased relative to packaged products produced in accordance with the prior art method which requires unpackaging and repackaging. In addition, certain binders were discovered to be better than others, as were particular combinations of binders, such as the combination of hydroxypropyl starch with a crosslinking agent (e.g., liquid smoke), together, o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Additive transfer film suitable for cook-in end use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Additive transfer film suitable for cook-in end use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Additive transfer film suitable for cook-in end use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3168126

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.