Optical: systems and elements – Deflection using a moving element – Using a periodically moving element
Reexamination Certificate
1998-11-06
2002-12-31
Pascal, Leslie (Department: 2633)
Optical: systems and elements
Deflection using a moving element
Using a periodically moving element
C359S199200
Reexamination Certificate
active
06501581
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to an adaptor and a method for use with a device communicating using light signals, and in particular an adaptor and a method for altering the path of propagation of a light signal transmitted by a device communicating using light signals.
BACKGROUND OF THE INVENTION
The definition of the “office” has changed dramatically over the last two decades. The office was once thought of as room in a building that a person went to communicate with customers, vendors, co-workers etc. and to prepare reports, proposals, correspondence, etc. This is no longer the case. At least two major advances in technology have helped redefine the way in which the public views the “modern” office.
One of the advances in technology that has been instrumental in changing the traditional definition of the office is the advent of “wireless” telephone technology. “Wireless” telephones allow the businessperson-on-the-go to communicate with his or her customers, vendors, etc. from literally almost anywhere on the planet. “Wireless” telephone technology has been instrumental in changing the definition of the office from a place that you go to, to any place that you go.
The other technology that has helped shape the definition of the modern office is the laptop computer. It is no longer necessary to go into the “office”, because the laptop computer allows all of the necessary facts and figures to be condensed down into an easily manageable, highly portable format. As was the case with the wireless phone, the portable computer allows the business person to take his or her office with him or her on the road, eliminating the need to remain tied down to a fixed location.
It seems almost a logical and foregone conclusion to marry these two technologies together to produce a highly portable and adaptable office suite. However, computer technology has principally been a “wired” technology. That is, for a peripheral to be associated with a portable laptop computer, it has been typically necessary to install a cable running from the peripheral to the computer. Thus, it has been necessary to use a cable to connect the cellular phone to the portable computer.
To achieve the desired goal of making the modern office fully “wireless”, it has been proposed to use infrared signals to transmit data between the cellular phone and the portable computer. However, there has been little to no standardization of the position of the infrared transmitter/receivers in cellular phones and the position of the infrared transmitter/receivers in portable computers. As a consequence, the infrared transmitter/receiver in the cellular phone and in the portable computer may be assembled in such a way that the phone may have to have its display reversed to the user to establish a communication link between the phone and the computer. By having the display reversed to the user, it may be nearly impossible for the user to be aware of status messages which may be displayed on the display of the phone.
One suggestion to overcome this problem is to increase the power of the signals transmitted back and forth between the phone and the laptop. By doing so, it is thought that even after reflecting off of obstacles in the path of propagation of the signal, the signal may be sufficiently strong so as to be readable by the receiving device. This might allow the face of the phone with the display thereon to be at least inclined at an angle to the user during a communication link between the phone and the computer.
However, this solution is hardly suitable. For one thing, even with the increased power, if the transmitter/receiver of the first device is oriented relative to the transmitter/receiver of the second device such that the transmitter/receivers do not face each other, the chances that a viable link can be established will be greatly diminished. Furthermore, given that battery consumption has always been a concern in the wireless telephone industry, and that the trend has been to minimize battery consumption to decrease battery size, a system that increases battery consumption is generally considered to be undesirable.
SUMMARY OF THE INVENTION
According to an aspect of the present invention, an adaptor for use with a light-communication device includes a frame and a light guide on the frame. The light guide has a first light port assembly to receive a light signal from a light-communication device, a second light port assembly to output a light signal received by the first light port assembly, and a light transmission element for directing a light signal in a predetermined path between the first and second light port assemblies.
The light transmission element may be a light transmission element with a selectively adjustable path between the first and second light port assemblies.
Additionally, the frame may include a first housing and a second housing guidingly supported on the first housing to be moveable relative to the first housing. The first light port assembly may be housed in the second housing, and the second housing may have a seat for receiving a light-communication device therein disposed proximately to the first light port assembly. The second light port assembly may be housed in the first housing.
In this adaptor, the first housing may have a first housing interface surface, and the second housing may have a second housing interface surface proximate to the first housing interface surface. The light transmission element may have a first light transmission element segment housed in the first housing, coupled to the first light port assembly, and having a first light transmission element interface surface disposed at the first housing interface surface. The light transmission element may also have a second light transmission element segment housed in the second housing, coupled to the second light port assembly and having a second light transmission element interface surface disposed at the second housing interface surface parallel to and proximate to the first light transmission element interface surface.
Further, the first and second housings may be moveable relative to each other about a housing axis, and the first and second light transmission element interface surfaces each may be substantially circular, have a center axis, and have the center axis collinear with the housing axis.
The first light port assembly may be a unidirectional optical device and the second light port assembly may be a multidirectional optical device.
Further, an amplifier assembly may be coupled to the light transmission element between the first and second light port assemblies to increase the strength of the light signal directed between the first and second light port assemblies.
Also, the second light port assembly may include first and second optical devices, and the light transmission element may be a light transmission element for directing a light signal in a first predetermined path between the first light port assembly and the first optical device and a second predetermined path between the first light port assembly and the second optical device. In particular, the light transmission element may include a trunk segment, first and second leg segments, and a Y-connector coupled to the trunk segment and the first and second leg segments. The trunk segment is coupled to the first light port assembly, the first leg segment is coupled to the first optical device and the second leg segment is coupled to the second optical device. Moreover, the first and second leg segments may be optical path guides having different effective diameters.
In any of the above-mentioned adaptors, the first or second light port assembly may be a unidirectional optical device, for example, a flat lens or a mirror. The first or second light port assemblies may also be a multidirectional optical device, for example, a hemispherical lens or a conically-shaped mirror. The light transmission element may be a fiber optic cable.
According to another aspect of the present invention, a light-communication system may include first and
Holcomb Henry
Snyder Thomas D.
Coats & Bennett P.L.L.C.
Ericsson Inc.
Pascal Leslie
Singh Dalzid
LandOfFree
Adaptor and method for use with a light-communication device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adaptor and method for use with a light-communication device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adaptor and method for use with a light-communication device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2981769