Education and demonstration – Computer logic – operation – or programming instruction
Reexamination Certificate
1999-04-16
2001-08-07
Martin-Wallace, Valencia (Department: 3713)
Education and demonstration
Computer logic, operation, or programming instruction
C434S322000, C434S362000, C434S188000, C434S323000
Reexamination Certificate
active
06270352
ABSTRACT:
FIELD OF THE INVENTION
This invention pertains to the field of educational software, and more particularly to an apparatus and a method for selecting problems and categories of problems that is adapted to a student's performance on those problems and categories.
BACKGROUND OF THE INVENTION
It has been a long held belief of many that repetition is the key to mastery of a subject. Also known as the “practice makes perfect” theory, the more frequently a problem is presented to a student, the more successful the student will be at solving the problem. This can be especially true in the area of grade school mathematics. Where mathematical equations can initially be a conglomeration of meaningless numbers to students, their repeated exposure to problems assist in their ability to eventually solve a given problem correctly.
As a result, a plethora of computer-based programs have been created which are premised on the “practice makes perfect” theory. Using a variety of audio and visual mechanisms, the underlying approach of these programs has been to force feed problems to a student, and to repeat any problems that a student misses. However, since each student possesses different areas of difficulty, and learns at a different pace, mere presentation and repetition of a problem is not always effective. For instance, if a student misses problem A once and problem B five times, random repetition will dictate that problem A has an equal probability of being selected as problem B. This can be ineffective because it does not focus a student's attention on a particular problem that he or she is having the greatest difficulty with, that is, problem B, and therefore does not consider the student's actual performance in selecting problems.
One solution is to repeat a missed problem in variable intervals according to the student's performance, where one interval is measured by the presentation of one problem. For example, if a student misses problem A, it will be repeated in a preconfigured interval that is increased if the student correctly answers the problem on the next presentation, or decreased if the student incorrectly answers the problem on the next presentation. If the preconfigured interval is one, then the first sequence of problem presentation following the first time that problem A is missed is:
Repetition 1:
problem B (INTERVAL 1)
problem A
If the student correctly answers problem A in Repetition 1, then the interval increases to two, for example, and the sequence of problem presentation following Repetition 1 becomes:
Repetition 2:
problem B (INTERVAL 1)
problem C (INTERVAL 2)
problem A
If the student correctly answers problem A in Repetition 2, then the interval increases to three, for example, and the sequence of problem presentation following Repetition 2 becomes:
Repetition 3:
problem B (INTERVAL 1)
problem C (INTERVAL 2)
problem D (INTERVAL 3)
problem A
If the student answers problem A in any repetition incorrectly, then the previous repetition is repeated, or Repetition 1 if there is no previous repetition. Once the student correctly answers the missed problem for all repetitions, up to a preconfigured maximum number of repetitions, it is not repeated in preconfigured intervals until it is missed again. There can, of course, be intervening repetitions for problems presented during the intervals, the details of which are not discussed herewith. (See expired U.S. Pat. No. 4,193,210 of Turnquist.)
Although this solution presents problem repetition commensurate with the student's performance, it is vulnerable to some degree of predictability as to subsequent presentation of problems because problem presentation under this method is methodical. In other words, if there are 5 problems, A, B, C, D, and E, and a student misses problem A, and then problem B, the missed problems will necessarily be repeated in sequential fashion. Even though there are interval problems to distance the repetition of missed problems, the repetition is nevertheless a sequential event. A need exists, therefore, for an apparatus and a method of selecting a problem that is adapted to a student's performance, such that a problem missed more frequently has a higher probability of being repeated more frequently than a problem missed less frequently, without the predictability that such a problem will necessarily be repeated on any given problem selection.
SUMMARY OF THE INVENTION
This invention is, in general, directed to method and apparatus for biased random selection of a problem or a category of problems based upon a performance measurement. Thus, the invention may comprise an apparatus for selecting a category, comprising a number of computer readable media and computer readable program code on the computer readable media, the program code comprising: program code for determining a category performance determinant for each of a plurality of categories, wherein said plurality of categories comprises a number of elements, and wherein a given category performance determinant corresponds to a given one of said plurality of categories, and wherein the given category performance determinant represents a measurement associated with a given one of said plurality of categories; and program code for making a biased random selection of a category from a plurality of categories, wherein each category performance determinant biases the selection of its corresponding category in the biased random selection.
The invention may also comprise an apparatus for selecting a category, comprising means for determining a category performance determinant for each of a plurality of categories, wherein a given category performance determinant corresponds to a given one of said plurality of categories, and is a measurement associated with a corresponding one of said plurality of categories; and means for making a biased random selection of a category, wherein said biased random selection means comprises means for each category performance determinant to bias the selection of its corresponding category in the biased random selection.
The invention may also comprise an apparatus for selecting a problem, comprising a number of computer readable media and computer readable program code on the computer readable media, the program code comprising: program code for determining a performance number for each of a plurality of problems, wherein a given performance number corresponds to a given one of a plurality of problems, and represent a student's performance on the given problem; and program code for making a biased random selection of a problem from a plurality of problems, wherein each performance number biases the selection of its corresponding problem in said biased random selection.
The invention may additionally comprise an apparatus for selecting a problem, comprising means for determining a performance number for each of a plurality of categories, wherein a given performance number corresponds to a given one of a plurality of problems, and is a measurement of a student's performance on the given one of a plurality of problems; and means for making a biased random selection of a problem, wherein said biased random selection means comprises means for each performance number to bias the selection of its corresponding problem in said biased random selection.
The invention may additionally comprise a method for selecting a problem, comprising determining a performance number for each of a plurality of problems wherein a given performance number corresponds to a given one of a plurality of problems and represents a student's performance on the given one of a plurality of problems; and making a biased random selection of a problem, wherein each performance number biases the selection of its corresponding problem in said biased random selection.
The invention may also comprise a method for selecting a category, comprising determining a category performance determinant for each of a plurality of categories, wherein a given category performance determinant corresponds to a given one of a plurali
Clinger Guy K.
Harris Chanda
Klaas, Law, O'Meara & Malkin, P.C.
Martin-Wallace Valencia
O'Meara William P.
LandOfFree
Adaptive problem selection does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adaptive problem selection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adaptive problem selection will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2534892