Adaptive modulation/coding and power allocation system

Pulse or digital communications – Transmitters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S377000

Reexamination Certificate

active

06683916

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to communication systems and in particular, to adaptive modulation/coding and power allocation in such communication systems.
BACKGROUND OF THE INVENTION
In order to increase the throughput of a link within a communication system, it has been proposed to utilize multistream transmission techniques with spatial multiplexing. In its simplest sense, multistream transmission can be thought of as the transmission of multiple data streams from a single transmitter source, using multiple transmit antennas, to a single receiver, using multiple receive antennas. Each data stream is transmitted utilizing the same channel resource (e.g., frequency/timeslot/code) and can be distinguished by the receiver due to the fact that the antennas are separated spatially at both the transmitter and the receiver. The receiver combines the signals from the multiple receive antennas to reconstruct the transmitted multistream data. Additionally, multistream methods can be combined with feedback from the receiver to the transmitter so that adjustments can be made for changing channel conditions.
It has been proposed to utilize stream-level adaptive modulation and coding (AMC) and stream-level power control techniques along with multistream transmission to further improve link performance. With stream-level power control (simply referred from now on as ‘power control’), the power of a transmitted stream is adjusted to some target power in order to meet a target signal-to-interference-plus-noise ratio, S/(I+N), at the receiver. (S/(I+N) is provided via feedback from the receiver). With stream-level AMC (simply referred from now on as ‘AMC’), the modulation and coding format of a stream is changed to match the current received signal quality (S/(I+N)). In a system with AMC along with multistream transmission, streams with high S/(I+N) are typically assigned higher-order modulations and high code rates (e.g., 64-QAM with rate-¾ convolutional coding), with the modulation-order and/or the code rate decreasing as S/(I+N) decreases. In a system with AMC combined with power control along with multistream transmission, streams with high S/(I+N) are typically assigned higher power along with higher-order modulations and high code rates, with the power level, the modulation-order and/or the code rate decreasing as S/(I+N) decreases. The total available link power is usually distributed across streams in order to match or approximate a water-filling distribution.
Unfortunately, current AMC and power-control methods fail to make efficient use of power-control techniques to allow for the highest combined data throughput over the various streams utilized by the receiver. More particularly, a number of streams may not have sufficient power to support higher code rates while other streams may be utilizing more power than is necessary to support the higher code rates. Accordingly, there is a need for AMC and power allocation which makes make efficient use of power-control techniques to allow for the highest combined data throughput over the various streams utilized by a receiver.


REFERENCES:
patent: 6031831 (2000-02-01), Tan Boon et al.
patent: 6304593 (2001-10-01), Alouini et al.
patent: 6385462 (2002-05-01), Baum et al.
patent: 6452964 (2002-09-01), Yoshida

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adaptive modulation/coding and power allocation system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adaptive modulation/coding and power allocation system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adaptive modulation/coding and power allocation system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3249598

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.