Adaptive method and apparatus for transmission line analysis

Data processing: measuring – calibrating – or testing – Measurement system – Measured signal processing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S190000

Reexamination Certificate

active

06697768

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to communications and in particular to a system and method for analyzing a transmission line.
RELATED ART
Historically, new communication technologies are continually being introduced to improve the ease and rate at which data can be exchanged between remote locations. One factor that must be considered when communicating electronic data is the medium over which the data will travel. This is often referred to as determining the channel quality, line characteristics, line transfer function, insertion loss, or channel impulse response. Numerous different types of conductors are utilized to conduct communication signals. One example medium that is commonly installed throughout the world is twisted pair conductors as are traditionally used to provide telephone service between a central office telephone facility and a residence or business.
The medium must be considered because the medium and its condition can affect the rate at which communication may occur. For example, digital subscriber line (DSL) technology utilizes twisted pair conductors. The rate at which systems using the DSL standards may operate is determined in part by the electrical characteristics of the twisted pair between a transmitting device and a receiving device. The factors that control the rate of communication may include the distance between the receiver and transmitter, presence of bridge taps or load coils, the quality of the twisted pair, the quality of connections to the twisted pair, and the amount of noise that the twisted pair picks up, such as crosstalk noise. As data communication speeds increase, the quality of the line and the presence of line anomalies become of greater importance.
It may be desirable to determine characteristics of the line prior to communicating data so that a data transmission rate may be determined or so that it may be determined if the line is able to support communications under a particular standard. For example, if certain line anomalies exist between a first communication unit and a second communication unit, it is desirable to learn of these anomalies and their effect on communication through the line. Moreover, it is desirable to determine the location of the anomalies so that repair or removal of the anomaly may occur. In the particular case of bridge taps and load coils, service technicians are dispatched to locate and remove the bridge tap or load coil. The dispatch of service technicians is expensive and hence, the less time the service technician must spend locating the line anomaly, the lower the cost of the dispatch. Therefore, the more accurately the anomaly location is identified, the less costly the service dispatch because the technician may more rapidly find and fix the anomaly.
One prior art method of line analysis, such as for evaluating the effects of or identifying the location of line anomalies comprises transmission of a high power pulse on the line. Impedance irregularities in the line cause a reflection or echo when encountered by the pulse. Time information is used to determine the location of the anomaly.
This method of line analysis suffers from numerous disadvantages. One disadvantage arises as a result of the necessary, but undesirable, use of a high power pulse. Transmission of a high power pulse on a line disrupts communication and operation of the other pairs in the binder by creating crosstalk between pairs. Another disadvantage of this prior art method arises because of the available echo processing methods. The in-use pairs in the binder with the line being tested create crosstalk in the line being tested. This limits a system's ability to detect weak return echoes which translate into a limitation on the ability of prior art pulse system to accurately analyze the distant end of a long line. Yet another drawback associated with the prior art method of high power pulse reflection analysis is the limited platforms available to generate a high power pulse. As a result, pulse test equipment must be implemented as a separate piece of test equipment and may not be an integrated circuit. This increases the cost of testing by requiring a separate piece of test equipment and can make its use inconvenient.
The invention overcomes the disadvantages of the prior art by providing a method for apparatus for sequence time domain reflectometry.
SUMMARY
In one embodiment, the invention comprises a line probe signal and method of generating the same for use in determining line characteristics. In one embodiment, the invention comprises a method and apparatus for processing a line probe signal to determine channel characteristics, such as to determine the location and type of one or more line anomalies. Line anomalies may comprise open circuit, short circuit, bridge taps, load coils, moisture on the line, or any other aspect that creates an impedance mismatch.
In one embodiment, a method for performing time domain reflectometry on a communication channel comprises generating a sequence signal and transmitting the sequence signal over a communication channel. In one embodiment the sequence signal has an autocorrelation function, which approximates a Kronecker delta function. The communication channel may comprise any channel such as but not limited to fiber optic cable, coaxial cable, power transmission line, network line Ethernet, twisted pair or any channel capable of conducting data. Next, the system receives one or more reflection signals from the communication channel in response to the transmission of the sequence signal. After receipt of the reflection signal, the system correlates the reflection signal with the sequence signal to generate a correlated signal. Due to the autocorrelation properties of the sequence signal, the correlated signal is a linear combination of the near-end echo and the echoes from one or more anomalies. Next, the system may retrieve a template signal. The template signal corresponds or is representative of the near-end echo in the reflection signal. After retrieving the template signal, the system aligns the template signal and the correlated signal to determine a point of alignment. The point of alignment may comprise when the two signal are most similar. Once aligned, the method subtracts the template signal from the correlated signal to remove near-end echo from the correlated signal. Other aspects of the reflection signal may be removed other than near-end echo. Next, the system measures a time interval between the point of alignment and a subsequent peak in the correlated signal. This reveals the amount of time it took for the signal to propagate to a line anomaly and for the reflection signal to return to the receiver. When the propagation time is determined, the system multiplies the time interval by the rate of propagation of the sequence signal through the communication channel to obtain a distance to a line anomaly. The rate of propagation for an electrical signal through a channel is generally known for different channel mediums. In one embodiment the method further includes dispatching a service technician or other personnel to fix the line anomaly.
In various other configurations or embodiments, the template signal may be measured or created by correlating the reflection from a long cable of the type to be tested and known to be free of anomalies or the template may be derived from a detailed circuit analysis of the transceiver and the line interface. In one embodiment, the sequence signal is transmitted at a power level that does not introduce crosstalk into other communication channels.
In another variation or embodiment, the method of operation also performs a circular rotation of the sequence signal to create a rotated sequence signal and transmits the rotated sequence signal over the communication channel. A rotated reflection signal is received and correlated with the rotated sequence signal that was transmitted to create a rotated reflection signal. This correlated rotated signal is aligned with the correlated signal and combined with the corre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adaptive method and apparatus for transmission line analysis does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adaptive method and apparatus for transmission line analysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adaptive method and apparatus for transmission line analysis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3297580

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.