Adaptive fly height for error recovery in a disc drive

Dynamic magnetic information storage or retrieval – General processing of a digital signal – Data verification

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S075000, C360S077070, C360S078040, C360S071000

Reexamination Certificate

active

06760174

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the field of magnetic data storage devices, and more particularly, but not by way of limitation, to data recovery through adaptive fly height for a data storage device.
BACKGROUND
Disc drives are used for data storage in modern electronic products ranging from digital cameras to computer systems and networks. A typical disc drive includes a head-disc assembly (HDA) housing the mechanical portion of the drive, and a printed circuit board assembly (PCBA), attached to the head-disc assembly. The printed circuit board assembly controls operations of the head-disc assembly and provides a communication link between the head-disc assembly and a host device served by the disc drive.
Typically, the head-disc assembly has a disc with a recording surface rotated at a constant speed by a spindle motor assembly and a head stack assembly positionably controlled by a closed loop servo system. The head stack assembly supports a read/write head that writes data to and reads data from the recording surface. Disc drives using a magneto resistive read/write head typically use an inductive element, or writer, to write data to the information tracks and a magnetoresistive element, or reader, to read data from the information tracks during drive operations.
One type of data recorded to and read from the information tracks is servo data. Servo data, including a physical track identification portion (also referred to as a servo track number or physical track number), written to the recording surface define each specific physical track of a number of physical tracks written on the recording surface. A servo track writer is traditionally used in writing a predetermined number of servo tracks to each recording surface during the manufacturing process. The servo tracks are used by the closed loop servo system for controlling the position of the read/write head relative to the recording surface during disc drive operations.
High performance disc drives achieve areal bit densities in the range of several gigabits per square centimeter (Gbits/cm
2
). Higher recording densities can be achieved by increasing the number of bits per centimeter stored along each information track, and/or by increasing the number of tracks per centimeter written across each recording surface. Capacity increases gained through increasing the bits per centimeter stored on each track generally requires improvements in the read/write channel electronics to enable data to be written to and subsequently read from the recording surface at a correspondingly higher frequency. Capacity increases gained by increasing the number of tracks per centimeter on each recording surface generally require improvements in servo control systems, which enable the read/write head to be more precisely positioned relative to the information tracks.
Signal loss in reading data from an information track in a disc drive is directly proportional to the distance the read/write head is from the information track and the wavelength of the signal. Often, a reduction in an operating fly height of the read/write head accompanies density increases through increased bits per centimeter along the information track. The term operating fly height means a distance, determined for a disc drive by design, the read/write head is spaced from the disc surface to achieve an optimum read/write performance for the head media combination within a disc drive of a particular design. An abrupt reduction in the operating fly height, that may occur, for example, by encountering an asperity event, for disc drives using a magnetoresistor in the reader portion of the read/write head increases the difficulty in recovering data.
An effect of an asperity event on the magnetoresistor and the resulting response of the read channel are well known. An asperity event is characterized by a sudden increase in amplitude of the read signal relative to a normal signal baseline, followed by a decaying portion that lasts for about two microseconds. The portion of the readback signal corresponding to the thermal asperity will generally be sufficiently distorted to prevent proper decoding by the read circuit.
The read circuit and the servo circuit for both training and decoding purposes rely on a normal signal baseline. Excursions of the read signal from the normal signal baseline trigger a response by the read/write channel electronics to decrease the gain of the automatic gain control portion of the read channel, causing an inability of the read circuit and the servo circuit to properly decode the readback signal. Accordingly, monitoring the amplitude of the read signal for sudden increases in amplitude beyond the normal signal baseline followed by a data error provides a convenient means for detecting an asperity event. For reference, additional discussions concerning detection of an asperity event are provided in U.S. Pat. No. 5,995,313 issued Nov. 30, 1999 to Dakroub and U.S. Pat. No. 6,043,946 issued Mar. 28, 2000 to Genheimer et al, both assigned to the assignee of the present invention.
Data errors also can come about due to a variety of temperature, voltage, and other margin conditions present during a write operation that weaken the state of the recorded data. During a read operation those same conditions may have the effect of weakening the ability of the reader to read previously recorded data. In either case, data errors reduce the ability of the disc drive to reliably read previously recorded data.
Therefore, challenges remain and needs persist for means of improving recovery of data errors absent an increase in wear of the active elements of the read/write head to improve disc drive reliability. It is to this and other features and advantages set forth herein that embodiments of the present invention are directed.
SUMMARY OF THE INVENTION
As exemplified by preferred embodiments, the present invention provides for improving reliability of a data storage device by incorporating an error recovery routine into the data storage device to. The error recovery routine incorporates steps for recovering data recorded to a data sector on a recording surface of a disc of the data storage device.
When a data error is encountered while reading the data from the data sector with a reader of the read/write head of the data storage device, the error recovery routine is initialized. Once initialized, the error recovery routine determines whether the data error is the result of an encounter with an asperity on the recording surface of the disc, or is a result of a low amplitude read signal generated by the data recorded to the data sector. In response to the determination of the reason for the occurrence of the data error, the error recovery routine either raises or lowers the fly height of the read/write head in an attempt to recover the data.
For data errors determined as resulting from encounters with asperities, a first attempt is made by raising the fly height of the read/write head and the data recorded in the first data sector of the disc of the data storage device is read. Failing data recovery by raising the fly height of the read/write head the error recovery routine continues by moving the reader off of track center of the data sector, lowering the fly height, burnishing the asperity with the read/write head and re-reading the data sector.
For data errors determined as resulting from low amplitude read signals, the error recovery routine lowers the fly height of the read/write head by a predetermined amount and re-reads the data sector. Failing to recover the data, the error recovery sequentially lowers the fly height of the read/write head to a predetermined minimum level and re-reads the data sector to recover the data recorded to the data sector. Upon recovery, the data is held in a data buffer, and then recorded to a second data sector of the disc while the first data sector is marked as an unusable data sector.
These and various other features and advantages, which characterize the present invention, will be apparent from a reading of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adaptive fly height for error recovery in a disc drive does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adaptive fly height for error recovery in a disc drive, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adaptive fly height for error recovery in a disc drive will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3246667

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.