Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2000-04-10
2002-06-04
Getzow, Scott M. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C607S005000
Reexamination Certificate
active
06400986
ABSTRACT:
FIELD OF THE INVENTION
This invention pertains to methods and systems for treating cardiac arrhythmias with anti-tachycardia pacing. In particular, the invention relates to methods and systems for delivering anti-tachycardia pacing therapy with a cardiac rhythm management device.
BACKGROUND
Tachyarrhythmias are abnormal heart rhythms characterized by a rapid heart rate, typically expressed in units of beats per minute (bpm). Examples of tachyarrhythmias include supraventricular tachycardias (SVT's) such as sinus tachycardia, atrial tachycardia, and atrial fibrillation. The most dangerous tachyarrythmias, however, are ventricular tachycardia (VT) and ventricular fibrillation (VF). Ventricular rhythms occur when an excitatory focus in the ventricle usurps control of the heart rate from the sinoatrial node. The result is rapid and irregular contraction of the ventricles out of electromechanical synchrony with the atria. Most ventricular rhythms exhibit an abnormal QRS complex in an electrocardiogram because they do not use the normal ventricular conduction system, the depolarization spreading instead from the excitatory focus directly into the myocardium. Ventricular tachycardia is characterized by distorted QRS complexes occurring at a rapid rate, while ventricular fibrillation is diagnosed when the ventricle depolarizes in a chaotic fashion with no recognizable QRS complexes. Both ventricular tachycardia and ventricular fibrillation are hemodynamically compromising, and both can be life-threatening. Ventricular fibrillation, however, causes circulatory arrest within seconds and is the most common cause of sudden cardiac death.
Cardioversion (an electrical shock delivered to the heart synchronously with the QRS complex) and defibrillation (an electrical shock delivered without synchronization to the QRS complex to terminate ventricular fibrillation) can be used to terminate most tachycardias, including SVT's, VT, and VF. The electric shock terminates the tachycardia by depolarizing all excitable myocardium which prolongs refractoriness, interrupts reentrant circuits, discharges excitatory foci. A class of cardiac rhythm management devices known as an implantable cardioverter/defibrillator (ICD) provides this kind of therapy by delivering a shock pulse to the heart when fibrillation is detected by the device.
Another type of electrical therapy for tachycardia is antitachycardia pacing (ATP). In ATP, the heart is competitively paced with one or more pacing pulses in an effort to interrupt reentrant circuits causing the tachycardia. Modem ICD's typically have ATP capability so that ATP therapy is delivered to the heart when a tachycardia is detected, while a shock pulse is delivered when fibrillation occurs. Although cardioversion/defibrillation will terminate tachycardia, it consumes a large amount of stored power from the battery and results in patient discomfort owing to the high voltage of the shock pulses. It is desirable, therefore, for the ICD to use ATP to terminate a tachyarrhythmia whenever possible. Generally, only cardioversion/defibrillation will terminate fibrillation and certain high rate tachycardias, while ATP can be used to treat lower rate tachycardias. An arrhythmia which is regarded as terminable by ATP therapy, based upon rate or other factors, will be referred to herein as a terminable arrhythmia.
In most ICD's with ATP capability, ventricular fibrillation (VF) is distinguished from ventricular tachycardia (VT) using rate based criteria so that ATP or shock therapy can be delivered as appropriate. The heart rate is usually measured by detection of the time between successive R waves (i.e., ventricular depolarizations). A measured heart rate is classified as a tachycardia when the rate is in a VT zone, defined as a range of rates above a tachycardia detection rate (TDR) but below a fibrillation detection rate (FDR). A measured heart rate above the FDR, on the other hand, is in the VF zone and is classified as a fibrillation. In a typical device, a tachycardia with a heart rate in the VT zone is treated with ATP therapy in order to avoid an unnecessary painful shock to the patient, and a defibrillation shock is delivered if the pacing fails to terminate the arrhythmia. It is a primary objective of the present invention to provide a method and apparatus for delivering ATP therapy in a manner that increases the likelihood that ATP therapy will terminate an arrhythmia without resorting to a defibrillation shock.
SUMMARY OF THE INVENTION
In accordance with the invention, a cardiac rhythm management device with ATP capability is programmed to deliver ATP therapy upon detection of a tachycardia in the VT zone by employing a pacing protocol selected from a library of such protocols. The library contains a parameter set for each protocol that defines the manner in which ATP pulses are output by the device. The selection of a particular pacing protocol from the library may be based upon information contained in a result table which reflects the past results of particular protocols in terminating arrhythmias. In one embodiment, each time a particular protocol is used in attempting to convert an arrhythmia, the success or failure of the protocol is tabulated in the result table, and a success/failure ratio is thereby maintained and associated with each protocol in the library. The device may then be programmed to select protocols from the library in an order corresponding to the success/failure ratio of each protocol in terminating an arrhythmia. A specified number of attempts with ATP therapy may made before a shock pulse is delivered, with each attempt employing a pacing protocol selected from the library in accordance with the information contained in the result table. In one embodiment, the protocol with the highest success/failure ratio is initially selected, and if the arrhythmia is not converted, the protocol with the next highest ratio is then selected. After a specified number of unsuccessful attempts with ATP therapy, a shock pulse is delivered to terminate the arrhythmia. In a further refinement of the invention, terminable arrhythmias are classified as to type based upon rate and/or the depolarization waveform morphology, and a separate result table is maintained for each type of arrhythmia. Upon detection of a particular arrhythmia type, the result table for that type is used to select the ATP protocol to be employed and is then updated with the corresponding results of the ATP therapy attempt.
In a particular embodiment, the result table is implemented with a pair of counters associated with each protocol contained in the library. After each attempt of ATP therapy using a particular protocol, the one of the counters associated with the protocol is incremented to indicate the success or failure of the protocol in terminating the arrhythmia. The information contained in the counters may then be used to calculate a success/failure ratio or some other parameter that in some way reflects the likelihood that a protocol will be successful in terminating the arrhythmia. In the case of an embodiment with separate result tables for different arrhythmia types, separate counters for each protocol are maintained for each type of arrhythmia, so that when a particular type of terminable arrhythmia is detected, the selection of the protocol is made using the counters associated with that type of arrhythmia.
REFERENCES:
patent: 4830006 (1989-05-01), Haluska et al.
patent: 5209229 (1993-05-01), Gilli
patent: 5224475 (1993-07-01), Berg et al.
patent: 5251624 (1993-10-01), Bocek et al.
patent: 5330505 (1994-07-01), Cohen
patent: 5342402 (1994-08-01), Olson et al.
patent: 5472453 (1995-12-01), Alt
patent: 5548619 (1996-08-01), Horiike et al.
patent: 5587970 (1996-12-01), Greenwood
patent: 5662688 (1997-09-01), Haefner et al.
patent: 5683424 (1997-11-01), Brown et al.
patent: 5836971 (1998-11-01), Starkweather
patent: 5846263 (1998-12-01), Peterson et al.
patent: 5855593 (1999-01-01), Olson et al.
patent: 6137308 (2000-10-01), Nayak
patent: 98/40122 (1998-0
KenKnight Bruce H.
Manicka Yatheendhar
Sun Weimin
Tze Martin
Cardiac Pacemakers Inc.
Getzow Scott M.
Schwegman Lundberg Woessner & Kluth P.A.
LandOfFree
Adaptive anti-tachycardia therapy apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adaptive anti-tachycardia therapy apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adaptive anti-tachycardia therapy apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2974309