Adaption resource module and operating method therefor

Multiplex communications – Communication techniques for information carried in plural... – Adaptive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S463000, C370S395430, C370S286000, C370S526000

Reexamination Certificate

active

06266342

ABSTRACT:

BACKGROUND TO THE INVENTION
This invention relates, in general, to an adaptable adaptation resource module and operating method therefor, and is particularly, but not exclusively, applicable to a digital signal processing resource that is provisioned to support numerous different adaptation protocols. More especially, the present invention is pertinent to an adaptable interface of a broadband-narrowband network, and particularly between an asynchronous transmission mode (ATM) network and a narrowband communication system supporting trunk circuits in which adaptation is required between time division multiplexed (TDM) communication and ATM communication.
SUMMARY OF THE INVENTION
Globally, telecommunication systems can generally be considered to be in a transitional phase between first generation narrowband digital networks (such as the global system for mobile (GSM) cellular communication system) and future multi-media digital networks (such as the universal mobile telecommunication system (UMTS)) having broadband capabilities. Indeed, radio frequency (RF) and wireline systems are being merged together to enhance the information transfer mechanism, while still providing some flexibility with respect to mobility within the network. For example, broadband (typically fibre-optic based) infrastructure connections are being utilised to support information (both voice and data) transfer between cellular RF coverage areas. The transition to broadband systems is, in fact, necessarily required to support higher data rate communications, including video and Internet applications that are presently being both considered and made available to subscribers to the service. Unfortunately, this transitional phase also presents system operators with several dilemmas, and also prejudices immediate implementation of such broadband systems. For example, until such a time when a free-standing broadband system becomes an accepted and freely available standard for all subscriber terminals (such as cellular telephones and data transmission devices, e.g. landline modems and computer terminals), system operators are reticent to write-off their significant investments in current narrowband infrastructure technology. Indeed, such narrowband infrastructure technology already provides a rich set of services and service creating environments that would have to be re-implemented to allow deployment in stand-alone broadband networks. Consequently, present day narrowband systems must be adapted to accommodate both narrowband and broadband users; with this statement particularly relevant to call establishment and inter-working procedures between these different forms of communication system.
As will be understood, for an effective migration between narrowband and broadband, system operators must particularly and necessarily consider an inter-working scenario in which all subscribers connect to a narrowband network, but one or more intermediate broadband networks are used to relay information between these narrowband subscribers. In fact, this very situation has been discussed in co-pending U.S. patent application Ser. No. 08/907,521 filed on Aug. 8, 1997 in the name of J. F. B. Cable et al. and assigned to Northern Telecom Limited, which co-pending US patent application is further identified by its title “SYSTEM AND METHOD FOR ESTABLISHING A COMMUNICATION CONNECTION”
In more detail, telecommunication networks comprise nodes connected by communication resources (usually termed “links”), with a particular network technology characterised both by the means of transmission of user and control information along these links and also by the routing and relaying functions embodied in the nodes. The term routing is used to describe the process of determining the path the information will take through the network while the term relaying is the process of transferring information from one link to another, i.e. the information is merely passed, without alteration, from one channel resource to another.
Taking GSM as an exemplary form of narrowband digital network, user and control information (or “data”) is interleaved, using time division multiplexing (TDM), on a sixty-four kilobit per second (kbps) bearer channel. More especially, the sixty-four kbps bearer channels, typically encoded with a pulse code modulation, are communicated between the base station sub-system (BSS) and the mobile service switching centre (MSC) over an E
1
link. Indeed, each bearer channel can be framed to support four voice calls of sixteen kbps comprised from thirteen kbps of sampled and encoded speech and three kbps of ancillary information, such as parity check and correction bits (and the like) and synchronisation information. Data is then relayed across a node by some form of synchronous TDM switching fabric, often of the “time-space-time” type, although other fabric arrangements are equally applicable. Control information (e.g. call set-up and tear-down messages) logically follows the same path (although not always the same physical path) through the network as user information and is terminated in each node for routing purposes. Routing is conventionally performed in each node on a “hop-by-hop” basis using long lived routing tables, i.e. the node is sufficiently intelligent to determine an optimum route of the succeeding connection. Control information is regulated by a signalling scheme that is distinctive to the type of network employed. Particularly, public signalling schemes are used between nodes by a public network and between public networks of different operators. Signalling scheme No. 7 is an important example of a public signalling scheme access signalling schemes used between subscribers and edge nodes of public networks, e.g. between a radio telephone and base station sub system. In fact, the most common digital access signalling schemes are common channel signalling schemes, such as the integrated services digital network (ISDN) DSS1 (and its predecessors) and channel associated signalling schemes that are both derived from analogue signalling. Private schemes are, generally, derived from access schemes but provide richer functionality with impersonal networks, such as within a secure private branch exchange (PBX).
On the other hand, broadband digital networks are characterised in that user and control information is transmitted in fixed or variable length “packets”, with these packets pre-pended with headers that contain bearer channel identification. In contrast with narrowband systems, user information is relayed across a node via an asynchronous switching fabric that examines each packet in turn (using some kind of fairness algorithm) and directs it to the appropriate output link in response to the input link and bearer channel identification. Routing and control information transmissions are, however, similar to that for the narrowband case and differ only in as much as the signalling schemes are technology specific.
To facilitate use of broadband networks and the migration of communication networks to high data-rate technologies (e.g. the two mega-bit per second rate envisaged within UMTS), there is a need to provide an effective mechanism for interconnecting narrowband networks through a transparent broadband ether. In other words, the broadband ether must accommodate and support narrowband signalling schemes without affecting either data integrity or in any way inhibiting data flow or interconnection. As such, a narrowband-broadband interface must contain adaptation modules that freely translate between TDM and ATM, for example.
With respect to an interface between a narrowband and broadband network, it would be desirable for digital signal processors (DSPs) to be provisioned to support current and enhanced signalling schemes and therefore to be able to provide different functionality and processing requirements demanded by different types of communication. More particularly, when moving from an asynchronous narrowband domain into an ATM (packet) domain (and back again) each TDM voice channel, generally, requires a separ

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adaption resource module and operating method therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adaption resource module and operating method therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adaption resource module and operating method therefor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2563314

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.