Metal working – Method of mechanical manufacture – Electrical device making
Reexamination Certificate
2001-10-26
2004-08-31
Arbes, Carl J. (Department: 3729)
Metal working
Method of mechanical manufacture
Electrical device making
C029S748000, C029S825000, C029S868000
Reexamination Certificate
active
06782618
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of cable splicing in high-voltage environments and in particular to the placement of a premolded high-voltage connector or other removable or permanent electrical insulating device over a high-voltage cable.
BACKGROUND OF THE INVENTION
The need for splicing high-voltage power cable is often encountered in the power service industry. For example, splicing may be required either due to damage to an existing cable caused by digging during construction or other like activities. In addition, the need for high-voltage cable splicing may arise due to additional cable connection requirements as a result of residential expansion and increasing energy demands. Unlike the splicing of low-voltage devices, which may be accomplished with the use of simple connectors with minimal insulation, (frequently constructed of copper, aluminum and like components) high-voltage devices require splices which must maintain proper voltage grading, electrical insulation and water tightness. To achieve these requirements, the art of premolded high-voltage splicing may include the use of one, two, three or more insulated members. In addition, a tight fitting rubber member or sleeve may also cover the cable member connections. Due to the fact that the sleeve is generally manufactured of one diameter, cable adapters may be employed to accommodate a broad range of cable diameters. Therefore, in combination, the insulated members, sleeves and cable adapters secure the spliced region, thereby providing for protection against water seepage into the connection. In addition, this type of assembly allows the cable-to-cable splice to achieve the desired voltage and insulation demands. Such a fitting requires a careful, and often timely installation process, which involves the connection of opposing cable members to, and/or the placement of cable adapters over the cable insulation. Cable adapters or cable members are then connected to one another, or to other connector components, to provide a successful splice. It is further known in the art to require additional components to be installed on-site for securing opposing cable adapters or cable members to one another. As a result, as the number of additional installation components increase, more assembly time may be required in the field, thereby effecting the efficiency of the splicing operation.
For a successful splice, the cable members must fit securely within the corresponding splice components. Thus the inside diameter of the splice component is generally designed to be smaller than the outer diameter of each corresponding cable member (i.e., commonly referred to as the “interference fit”.) To insure a snug fit, lubricant must be applied along the outside of the cable members and/or the inside of the cable adapters to assist in the installation process as the cable adapters are pulled over the corresponding cable members. However, difficulty may arise when a prepared or chamfered cable is inserted within a lubricated cable adapter. Specifically, upon insertion of the cable within the lubricated cable adapter, the chamfered cable acts to collect the useful lubrication from the inner portions of the cable adapter. Also, the interference fit acts to collect the lubrication from the outer portions of the cable thereby reducing the effectiveness of the lubrication. By removing the desired lubrication, it becomes extremely difficult to properly assemble the spliced cable member. In order to assist in the cable splicing operation it has become known in the art to use a wedge-shaped device to assist in drawing the chamfered cable through the cable adapter. Specifically, an adapter wedge, or mandrel, may be used to stretch the internal portions of the cable adapter to assist in drawing the chamfered cable through the cable adapter. By providing a wedge shaped device to assist in the assembly of the spliced members, lubricant may also be dispersed along the inner length of the spliced area (i.e., lubricant may be placed on the cable insulation, within the inner diameter of the cable adapter and on the wedge), thereby providing a void-free interface between the interior surfaces of the assembly. In addition, the void-free interface may further provide a resilient barrier against the ingress of moisture into the spliced region. However, adapter wedges or mandrels known in the art also remove and limit the usefulness of lubrication by creating excessive deposits of the lubrication at the base of the wedge as the splice is assembled. Specifically, the present wedges utilized in the art do not provide an adequate means for prevention of the removal of the lubricant during assembly. For example, based on the mechanical configuration and the designs of the prior art adapter wedges (i.e., linearly-tapered hollowed cylindrical cone), most, if not all of the lubricating substance is often removed from the cable members and cable adapters upon the placement of the wedge. At the circumference of the conical base, deposits of the lubricating substance form thereby rendering the lubricating substance useless by failing to provide a lubricating source at the points of contact between the adapter wedge and the cable adapter. Therefore, it becomes extremely difficult for lineman to complete the splice. The improper lubrication may lead to the use of excessive force by a lineman when affixing the adapter over the cable, which may lead to improper installation. As a result of this timely and difficult splicing process, additional and unnecessary labor costs may be incurred in the field.
Numerous disclosures are known in the art that attempt to deal with the splicing inconveniences encountered. Many of these disclosures and modes of splicing may be compatible with the present invention; however, these disclosures fail to provide the effective splicing components as presented in the present disclosure. Specifically, it is contemplated that any premolded splicing connection comprising an interference fit may be compatible with the present disclosure. For example, Fallot U.S. Pat. No. 3,980,374 teaches of a separable splice connector for use with 15 to 25 kilovolts and 600 amperes of current. The connector employs a unitary splice body assembly. The splice body assembly is constructed of molded elastic material and may be utilized for providing a straight splice. Therefore, it is foreseeable that the use of the adapter wedge employed in the present invention may be utilized in conjunction with the apparatus set forth in Fallot. However, Fallot fails to disclose the use of an adapter wedge for inserting the cable members within the corresponding cable adapters providing a secure fit. Therefore, there exists a need for an apparatus and method which provides a secure splice allowing for ease in operation, by allowing for a natural secure fit between cable members and splice components.
A second apparatus, comprising a pre-molded high voltage splice that may be compatible with the present invention, is disclosed in Lien U.S. Pat. No. 5,041,027. Lien discloses a system for electrically connecting a first power cable end to a second power cable end. The splice system comprises a first probe adapted to be electrically connected to the first power cable end and a second probe adapted to be electrically connected to the second power cable end and a cable splice. The cable splice further comprises two ends wherein a first female contact assembly is adapted to engage with the first probe and a second female contact assembly is adapted to engage with the second probe thereby forming a splice. However, Lien fails to disclose an apparatus comprising a mechanical configuration, which is effective for assisting in splicing high-voltage cables, that controls the removal of a lubricating substance. In addition, Lien fails to disclose an apparatus that allows for a dielectric sealant to be dispersed along the inner length of a cable adapter thereby providing a void-free bond between the surfaces of the cable member and cable adapter thereby provid
LandOfFree
Adapter mandrel used in conjunction with premolded high... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adapter mandrel used in conjunction with premolded high..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adapter mandrel used in conjunction with premolded high... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3345667