Actuation device with actuator and brake

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S093000, C345S184000, C345S161000

Reexamination Certificate

active

06420806

ABSTRACT:

BACKGROUND OF THE INVENTION
1). Field of the Invention
This invention relates to an actuation device of the kind used for interactive games.
2). Discussion of Related Art
Actuation devices are often used in, for example, interactive games. Forces are imparted to a hand of a person by a handle held in the hand of the in person. The degrees of freedom of movement of such a handle are usually relatively limited. Such a device usually includes relatively heavy motors which move together with the linkage mechanism of the device, resulting in large amounts of inertia. The motors used on such devices are also usually of the kind that exerts relatively small forces, so as to prevent injury to the person.
SUMMARY OF THE INVENTION
According to one aspect of the invention an actuation device is provided which includes a support frame first, second, third, and fourth linkages, a user interface component, and a first rotation actuator. Each linkage has first and second spaced apart portions. The first portions of the first and second linkages are secured to the support frame for pivotal movement about first and second spaced apart axes, respectively, and for rotational movement about a common first rotation axis transverse to the first and second pivot axes. The first portions of the third and fourth linkages are secured to the second portions of the first and second linkages for pivotal movement about third and fourth pivot axes, respectively. The second portions of the third and fourth linkages are secured to one another for pivotal movement about a fifth pivot axis. The user interface component is secured to the second portion of one of the third linkage and the fourth linkage. The user interface component has a surface shaped for contact by a body part of a person. The rotation actuator has a first rotation actuator body and a first rotation actuating component secured to the first rotation actuator body and is actuable to move relative to the first rotation actuator body. The first rotation actuator is connected between the frame and the first linkage such that movement of the first rotation actuating component causes rotation of the first, second, third and fourth linkages about the first rotation axis.
According to another aspect of the invention, an actuation device is provided which includes a support frame, first, second, third, and fourth linkages, a user interface component, and a first pivoting actuator. Each linkage has first and second spaced apart portions. The first portions of the first and second linkages are secured to the support frame for pivotal movement about first and second pivot axes, respectively. The third and fourth linkages are secured to the second portions of the first and second linkages for pivotal movement about third and fourth pivot axes, respectively. The second portions of the third and fourth linkages are secured to one another for pivotal movement about a fifth pivot axis. The user interface component is secured to the second portion of one of the third linkage of the fourth linkage. The user interface component has a surface shaped for contact by a body part of a person. The first pivoting actuator has a first pivoting actuator body and a first pivoting actuating component secured to the first pivoting actuator body. The first pivoting actuating component has lower mass than the first pivoting actuator body. The first pivoting actuating component is actuable to move relative to the first pivoting actuator body. The first pivoting actuator body is secured to the frame and the first pivoting actuating component is secured to the first linkage such that movement of the first pivoting actuating component causes pivoting of the first linkage about the first pivot axis.
According to a further aspect of the invention an actuation device is provided which includes a support frame, a linkage mechanism, a user interface component, an actuator, and a braking device. The linkage mechanism is secured to the support frame. The user interface component is secured to the linkage mechanism and has a surface shaped for contact by a body part of a person. The linkage mechanism allows for movement of the user interface component in at least one direction relative to the frame. The actuator has an actuating component secured to the actuator body. The actuating component is actuable to move relative to the actuator body. The actuator is connected between two components of the frame and linkage mechanism such that movement of the actuating component causes movement of the linkage mechanism so as to move the user interface device. The braking device has a braking device body and a braking component secured to the braking device body. The braking component is moveable relative to the braking device body. Movement of the braking component is controllable so as to vary a resistance to be overcome to move the braking component relative to the braking device body. The braking device is connected between two components of the frame and the linkage mechanism such that an increase of the resistance brakes the movement of the linkage mechanism imparted by the actuation device.
According to a further aspect of the invention an electric motor is provided comprising a housing, a plurality of stator magnets, first and second actuator components, a link, and first and second electrical conductors. The actuator motors are secured to the housing and are located in at least two row arrangements. For each row arrangement odd magnets have north on a first side and south on a second side and even magnets have south on the first side and north on the second side. The arrangements have magnetic field lines forming in one direction across a first actuator gap from each odd magnet of the first arrangement to each odd magnet of the second arrangement and across a second actuator gap from each odd magnet of the second arrangement back to each odd in magnet of the first arrangement, and in an opposing direction across the second actuator gap from each even magnet of the first arrangement to each even magnet of the second arrangement and across the first actuator gap from each even magnet of the second arrangement back to each even magnet of the first arrangement. The first and second actuator components are located in the first and second actuator gaps respectively. The link secures the actuator components to one another to form an actuator which is mounted to the housing for movement relative to the housing. The first and second electrical conductors are secured to the first and second actuator component respectively. The first conductor has a section located in the first actuator gap and extending transverse to the magnetic field lines so that a current therein causes movement thereof relative to the housing. The second conductor has a section located in the second actuator gap and extending transverse to the magnetic field lines so that a current therein causes movement thereof relative to the housing.


REFERENCES:
patent: 1241887 (1917-10-01), Ruckgaber
patent: 2266237 (1941-12-01), Newell
patent: 4110670 (1978-08-01), Araki et al.
patent: 5652603 (1997-07-01), Abrams
patent: 5796192 (1998-08-01), Riepl
patent: 6339420 (2002-01-01), Wittig

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Actuation device with actuator and brake does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Actuation device with actuator and brake, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Actuation device with actuator and brake will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2912571

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.