Actuating unit for an electromechanically operable disc brake

Brakes – Wheel – Axially movable brake element or housing therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C188S158000, C188S162000

Reexamination Certificate

active

06405836

ABSTRACT:

TECHNICAL FIELD
The present invention generally relates to vehicle brakes and more particularly relates to an actuating unit for an electromechanically operable disc brake for automotive vehicles which is arranged on a brake caliper.
BACKGROUND OF THE INVENTION
An electromechanical actuating unit of this general type is disclosed in DE 195 11 287 A1. In the actuating unit known in the art, the electric motor, by the intermediary of a planetary gear, drives the thread nut of a roller-and-thread drive whose threaded spindle actuates the first friction lining. The rotor of the electric motor additionally serves as the sun wheel of the planetary gearing, whose planet pinions are mounted in the thread nut and cooperate with a hollow wheel designed in the brake caliper. By way of the thread nut, the rotor is supported in a central bearing arranged in the brake caliper.
The state of the art actuating unit has disadvantages inasmuch as, during its actuation, disturbances which are due to the clamping force of the electromechanical brake and also the transverse forces and bending moments which occur during operation are transmitted via the roller-and-thread drive to the rotor so that it is impossible to guarantee the presence of a constant air gap between the stator and the rotor. This impairs the rate of efficiency of the above-mentioned arrangement. Further, the rotor which is used as the sun wheel of the planetary gearing may become damaged by the effect of the above-mentioned forces or bending moments which may lead to an inclined positioning in relation to the stator.
Therefore, an object of the present invention is to improve upon an electromechanic actuating unit of the type initially referred to in such a manner that the second reduction gear is uncoupled from the first reduction gear so that an equal position of the rotor relative to the planet pinions as well as of the planet pinions relative to the hollow wheel can be ensured.
According to the present invention, this object is achieved in that the electric motor, the first reduction gear, and the second reduction gear are configured as at least two assemblies which can be handled independently, so that the electric motor is arranged outside of the flux of force of the clamping force and its operation cannot be impaired by interferences.
To specify the idea of the present invention, the electric motor, the first reduction gear, and the second reduction gear are configured as each one assembly which can be handled independently. An electromechanic actuating unit of such a construction is distinguished by a high rate of efficiency, an extraordinary dynamics of brake actuation, and an extremely compact type of construction permitting the transmission of high mass-related brake torques. Further, the modular-design assemblies can be manufactured and tested separately.
In a favorable improvement of the object of the present invention, the second reduction gear is arranged on the side of the electric motor remote from the brake linings. This measure permits uncoupling the second reduction gear from the first reduction gear in terms of construction so that deformation of the second reduction gear is reliably prevented and constant clearances may be maintained within the gear.
In another favorable embodiment of this invention, a short force transmission travel of the clamping force is achieved because the first reduction gear is configured as a roll-body and thread drive whose thread nut cooperates with the second reduction gear.
Alternatively, the first reduction gear can be designed as a roll-body and thread drive whose threaded spindle cooperates with the second reduction gear. This measure achieves optimizing the central bearing which cooperates with the threaded spindle.
In another favorable aspect of the present invention, the first reduction gear is configured as a roller-and-thread drive, preferably a roller-and-thread drive with an inward roller return arrangement. Optimal force transmission can be achieved due to the high load capacities of the thread rollers, and the inward return arrangement of the thread rollers permits an easy manufacture of the thread nut.
In another embodiment of the present invention which distinguishes particularly by a low sensitivity to transverse forces, the first reduction gear is configured as a ball-and-thread drive.
In this arrangement, it is especially advantageous that the actuating element is in a force-transmitting connection with the threaded spindle of the roll-body and thread drive and is formed of a force transmission plate which is guided in an annular housing in which the roll-body and thread drive is incorporated. Preferably, the force transmission plate includes at least two radially opposite guiding pins which are accommodated by correspondingly designed guiding surfaces in the housing. These measures permit achieving an effective isolation of the clamping force from the transverse forces which occur during operation and are introduced into the brake caliper.
In another favorable embodiment of the present invention, the thread nut is axially supported on a bearing ring arranged in the housing, and a force sensor is arranged between the bearing ring and the housing. These measures permit realizing a concept with a very short flux of force, with the force sensor representing a component which is arranged in the flux of force, yet is not entrained in movement.
In still another favorable aspect of the present invention, a favorable distribution of load in the ball-and-thread drive is achieved by a conical bore incorporated in the threaded spindle of the ball-and-thread drive in which a push rod is received which serves to transmit pressure forces and the ends of which are supported in an axial extension of the force transmission plate or on the bottom of the bore in a rotationally fixed manner. The threaded spindle is only tensilely loaded due to these measures, and the load portions of the indivdiual balls are rendered more uniform.
To effectively protect the actuating mechanism, especially against contaminants, for example splash water, an elastic seal is provided between the force transmission plate and the housing in another advantageous aspect of the present invention.
In order to considerably reduce the necessary drive torque to be generated by the electric motor, the second reduction gear is configured as a planetary gearing. The planetary gearing is a non-friction gear in which shape variation is not needed and by which high efficiency in little mounting space can be reached.
A higher gear ratio is achieved in another embodiment of the object of the present invention in that the second reduction gear is designed as a planetary gearing with stepped planet pinions.
The attainable gear ratio can be increased further in that the planet pinions with their first step are in engagement with a sun wheel, while the planet pinions with their second step are in engagement with a hollow wheel, by the intermediary of each one spur wheel. However, it is also easily possible to design the second reduction gear as a two-step differential planetary gearing. In the latter type of gearing, an optimal overall length is achieved by using a larger sun wheel.
In another favorable aspect of the object of the present invention, mounting space is optimized because the sun wheel of the planetary gearing is designed on the rotor, while the planet pinions are mounted in a pinion cage that is in a force-transmitting connection with the thread nut. The planet pinions are comprised of each one first large-diameter planet pinion that is in engagement with the sun wheel and each one smaller-diameter second planet pinion that is in engagement with a hollow wheel. The hollow wheel of the planetary gearing is preferably formed of an internally toothed outer ring of a radial bearing in which the pinion cage is supported. These measures achieve a high degree of integration of the arrangement.
The transverse forces which occur during operation are effectively uncoupled in another preferred aspect of the present inv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Actuating unit for an electromechanically operable disc brake does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Actuating unit for an electromechanically operable disc brake, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Actuating unit for an electromechanically operable disc brake will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2963534

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.