Actuatable connector system

Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – With provision to conduct electricity from panel circuit to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06672878

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an electrical connector and more specifically to an electrical connector used to connect printed circuit boards.
BACKGROUND OF THE INVENTION
High speed electronic digital computers of the type produced by Silicon Graphics, Inc., the assignee hereof, typically require multitudes of electrical connections between various printed circuit cards within a system. Presently, one printed circuit board or mother board is provided with a plurality of connectors along one surface. Other printed circuit boards, called daughter boards, include edge connectors and are attached or plugged into the plurality of connectors on the mother board. Typically, only one surface of the mother board is provided with connectors and one edge of a daughter board is provided with an edge connector. This prevents problems with stack up tolerance. Currently, a daughter board is not provided with edge connectors on two edges because stack up tolerances make it nearly impossible to connect a daughter board to a mother board and another board. Typically, the motherboard is in a fixed position when one or more daughter boards are plugged into the slots of the motherboard. Adding another motherboard to the daughterboards is nearly impossible to accomplish because of differences due to tolerances between two connectors on each edge of the daughterboard and because of differences due to tolerances between the connectors on the second board. In summary, one motherboard is connected to a number of daughterboards. The daughterboards are connected only to one motherboard. As a result, there is a lack of flexibility in making connections between motherboards and daughterboards. The arrangements for connecting daughterboards to motherboards are limited. There are no interconnection between daughterboards. Furthermore, each daughterboard is connected to only one motherboard. In other words, the number of interconnections between and first board and a second board are limited to one interconnection.
The lack of flexibility in connecting motherboards and daughterboards also causes other sets of problems. Some computer systems are rack mounted. Generally, the various components of the system are placed in vertical racks. The lack of flexibility in connecting motherboards and daughterboards causes problems in rack mounted systems. The problems include accessibility to the motherboard and the daughterboard, and space which must be wasted in order to cool a motherboard and daughterboard “brick”. One common way of mounting motherboards and daughterboards in rack-mounted systems is to have a motherboard which extends horizontally across the back of a rack-mount unit. This motherboard is referred to as a backplane. The backplane has a number of connecters mounted on a surface of the backplane. Daughterboards are connected to the connectors to the connectors on the backplane. The daughterboards are passed through the front of the rack mount unit and then edge connectors are engaged with the slots on the backplane. This system of daughterboards connecting into motherboards allows easy access to the daughterboards. The motherboard or backplane can also be accessed after removing some or all of the daughterboards. One of the problems is that daughterboards only have one connection to another board. In other words, the daughterboards do not interconnect to one another unless through the motherboard.
Motherboards and daughterboards include electrical components that must be cooled. The components on these boards can be air cooled. The problem is that the arrangement of a motherboard serving as a backplane with daughterboards plugging into connectors on the motherboard is somewhat difficult to cool. The motherboard blocks airflow through the brick. The airflow necessary to cool the “brick” must flow around the top and bottom of the motherboard and then past the daughterboards connected into the motherboard. Of course, the airflow could be reversed and also cool the “brick”. The problem is that additional space must be provided to accommodate the airflow. Rack mount systems have different sized racks for different items. The size of the rack is generally fixed in terms of width and depth so the only dimension that varies with individual rack mount portions is the height of the rack mount portion. The height is generally spoken of in terms of Us. One U equals 1.75 inches. The height of the motherboard serving as a backplane is 6 U the height of the rack mount unit is 10 U. In order to cool the arrangement of daughterboards plugged into a backplane motherboard, 4 U must be allotted to provide for sufficient air flow to cool the “brick”. Other arrangements could be designed if the design was not limited to a backplane with a single surface carrying a set of connectors into which the daughterboards were connected. Other arrangements would not require space including 4 U needed for sufficient airflow.
A motherboard with multiple slots into which daughterboards connect requires that a relatively substantial force be applied to the daughterboard in order to force the daughterboard into the connector on the motherboard. There is also a lack of any alignment features which can be used to guide the daughterboard into the slot of the motherboard. People servicing computers have been known to apply a force to the daughterboard while it is not properly aligned. This would be less likely to occur if the connector included alignment guides. A problem with current connectors is that there is a lack of alignment, and a lack of a balance of forces. These add up to a less reliable system.
Therefore, there is a need for a connector that is flexible and which can accommodate differences in tolerance between various boards. There is also a need for a connector which can carry multiple signals. Furthermore, there is a need for a connector that can carry signals between motherboards and daughterboards, and also between daughterboards without having to travel through a motherboard. In other words, there is a need for a connector that allows for connection between any two boards. For example, a connector that allows a daughterboard to connect to another daughterboard in a “brick”. There is a further need for a device that is relatively inexpensive and which is reliable.
SUMMARY OF THE INVENTION
A connector system for places a first electrical component in electrical communication with a second electrical component. The connector system includes a first end attached to the first electrical component. The first end has a first portion affixed to one of the first electrical component and the second electrical component. The affixed portion includes a first capture feature. A second portion has a second capture feature which mates with the first capture feature. A third portion is attached to the second portion. One of the first portion and the second portion has an opening therein. The opening has a set of guide ways. The second and third portion are attached by a cam. The cam allows the third portion to move with respect to the second portion. The third portion includes a portion which engages the opening having a set of guide ways. A second end is attached to the second electrical component. A flexible circuit electrically connects the first end and the second end of the connector system. The set of guide ways includes at least two beveled edges of the opening. In some embodiments, the connector system also includes a first set of electrical contacts positioned within the opening, and a second set of electrical contacts positioned on the portion of the connector which engages the opening. Electrical contact is achieved between the contacts when the third portion of the connector engages the first portion of the connector. In some embodiments, the cam is a wedge, or includes a lobe and is rotatable. The flexible circuit is of a length to form a curve when the first end and the second end are connected between the first electrical component and the second electrical component. The first capture feature of the f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Actuatable connector system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Actuatable connector system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Actuatable connector system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3241470

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.