Active wavelength locking

Coherent light generators – Particular beam control device – Tuning

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S032000

Reexamination Certificate

active

06798796

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method and apparatus for actively locking the emission wavelength of a light source, and in particular the wavelength locking of a tunable laser diode for use in wavelength division multiplexed systems.
BACKGROUND TO THE INVENTION
There are many applications for which an accurate, frequency stabilized laser source is required and accordingly a range of techniques has been developed by which this may be achieved. For example, spectroscopic studies often require an ultra-narrow linewidth source that is frequency stabilized to a tolerance similar to the linewidth. Such stabilization may be achieved by temperature controlled intracavity etalons with appropriate feedback circuitry. However, this approach is expensive and the lasing wavelength is sensitive to changes in the reference etalons.
Modern optical communication networks often employ wavelength division multiplexing (WDM) to increase data capacity. This in turn requires sources which can be locked in sufficiently close proximity to the accepted frequencies specified in the ITU grid for optical telecommunications. For example, the C-band runs from 191.00 THz to 195.90 THz, allowing for 50 channels at 0.10 THz (100 GHz) spacing. In the future, dense WDM (DWDM) systems will use even closer channel spacing (50 GHz or 25 GHz) to increase the number of channels. It is thus imperative that a source is available, on which data can be encoded by modulation, and that will remain locked to the desired ITU grid frequency with sufficient accuracy. Any significant inaccuracy in absolute frequency, including frequency drift, will lead to cross-talk between channels and thereby compromise data integrity.
It is also desirable that a DWDM source can produce an optical output at a plurality of the grid frequencies, either simultaneously or discretely by tuning of the lasing wavelength.
FIG. 1
shows a known technique for the wavelength locking of a tunable laser diode (LD). A small optical leakage from the back of the LD is amplitude split into two portions, one portion being immediately sampled by a photodetector (PD
2
), such as a photodiode, the other portion being sampled by another photodetector (PD
1
) after passing through an optical filter with well-defined transmission characteristics, which often vary periodically with wavelength. Once the system has been calibrated, the difference in the electrical signals from PD
1
and PD
2
provides information about the wavelength which can be processed to provide a feedback signal for tuning the LD wavelength. A variety of tuning techniques exist, including the distributed Bragg reflector (DBR) and external grating feedback.
An alternative approach for multiple DWDM carrier frequency generation is based on optical frequency comb generation (OFCG). An optical frequency comb generator (OFCG) produces a stable optical signal with a plurality of equally spaced, discrete frequency components, each component typically being characterized by a linewidth much less than the spacing of the discrete components. Many techniques for comb generation are known, including multiple integrated cavity lasers, spectrum slicing of a supercontinuum source, use of non-linear fibre properties and external cavity resonator with integrated phase modulator.
FIG. 2
shows a schematic of a popular type of OFCG, the amplified ring, external cavity OFCG, here using an erbium doped fibre (EDF) ring resonator. This approach has the advantages of accurate centre reference frequency, supplied here by injection from a distributed feedback (DFB) LD, tunable comb separation, achieved via an intra-loop phase modulator whose driving frequency can be controlled, and a single frequency stabilization circuit for all generated channels.
The output of an OFCG can be used directly as a DWDM source, simultaneously providing multiple carrier frequencies. However, the frequencies of the discrete carriers cannot be tuned independently, and as the spectrum of an OFCG is typically non-uniform in amplitude, it often requires re-shaping and amplification. Moreover, the carrier frequencies within the optical signal require demultiplexing before information can be encoded on the individual channels.
As a result, an alternative approach has been to use the output of an OFCG to injection lock one or more tunable LDs, in a master-slave arrangement. This type of source has the benefit of a more broadly tunable source, whilst the lasing wavelength can be locked to the appropriate reference contained within the OFCG spectrum. Furthermore, the carrier frequency generated by the LD can be directly modulated, either intra-cavity or extra-cavity, in order to encode data. Despite these benefits, there are a number of factors which can give rise to device complexity and cost.
Due to the nonuniformity of the comb spectrum, it may be necessary to flatten it by means of an external EDF amplifier (EDFA), in order to ensure more uniform spectral power density when injecting several LDs with different frequencies. Optical coupling between the OFCG and the LD can lead to complexity and losses, and may be further complicated by the need to achieve polarization matching. Optical isolation is required to avoid unwanted feedback to the OFCG. Accurate locking to a single comb frequency may only be ensured if the injection locking bandwidth is smaller than the comb spacing, otherwise unwanted line suppression may be required. Finally, despite the use of injection locking, it is still necessary to have control circuitry for electrical tuning and possibly even a feedback loop for accurate frequency stabilization.
There is, therefore, a requirement for a low cost and effective technique for stabilizing the wavelengths of one or more tunable lasers for use in WDM systems, and particularly for the more dense WDM systems, with closer channel spacing, envisaged for the future.
SUMMARY OF THE INVENTION
According to one aspect of the present invention, a wavelength locked tunable laser source comprises:
a tunable laser source;
an optical reference source having a frequency spectrum comprising a first comb of discrete components and a second comb of discrete components, the spacing of the discrete frequency components in the second comb being different to the spacing of the discrete frequency components in the first comb;
an optical mixing device; and,
feedback control circuitry;
wherein a portion of an optical output of the laser source is heterodyned with a portion of an output of the optical reference source at the optical mixing device to produce an electrical signal in dependence on a difference beat frequency of the two optical outputs, the feedback control circuitry being operative to process the electrical signal to provide a feedback signal which is used to tune the optical wavelength of the laser source such that the beat frequency is minimized, thereby, in use, substantially locking the wavelength of the laser source to a wavelength in the frequency spectrum of the optical reference source.
Preferably, the tunable laser source is locked to a frequency component in the first comb.
The use of an optical reference source with an optical spectrum comprising two frequency combs provides an aid to determining the absolute frequency to which the laser has been locked.
Preferably, a component in the second comb and a component in the first comb are at substantially the same frequency, a reference frequency.
Preferably, the reference frequency is the centre frequency in the spectrum of the first comb.
Preferably, the difference between the frequency spacing in the first comb and second comb is less than the frequency spacing in the first comb divided by a multiple of the number of frequency components in the first comb that are of interest. Preferably, the multiple is two, more preferably five and most preferably ten.
Preferably, the amplitude of the frequency components in the second comb is substantially less than the amplitude of the frequency components in the first comb. This allows the lasing frequency to be prefer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Active wavelength locking does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Active wavelength locking, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Active wavelength locking will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3206131

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.