Active shunt capacitance cancelling oscillator circuit

Oscillators – Electromechanical resonator – Crystal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C331S1160FE

Reexamination Certificate

active

06624708

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to electronic oscillator circuitry, and in particular to an oscillator circuit for a piezoelectric crystal which compensates for and effectively cancels out any shunt capacitance associated with the piezoelectric crystal thereby improving the ability of the crystal to continue to oscillate although contacted by a viscous, fluid or solid medium and to enable more accurate measurements of characteristics (e.g. density and viscosity) of the medium.
BACKGROUND OF THE INVENTION
Piezoelectric crystals can be used to sense properties a viscous medium or changes in the properties thereof when the viscous medium is brought into contact with a surface of the piezoelectric crystal when the crystal is electrically activated into resonance (see e.g. U.S. Pat. No. 5,201,215 which is incorporated herein by reference). The electrical activation of the crystal can be performed by placing the crystal into an oscillator circuit which generally operates at a frequency corresponding to an odd multiple of one-half of an acoustic wavelength of the crystal so that at resonance a standing shear wave is generated across the thickness of the crystal. Contact of a surface of the crystal by the viscous medium results in a decrease in the oscillation frequency of the crystal and a damping of the resonance which can be used to ascertain characteristic properties (e.g. viscosity and density) of the medium. To sustain oscillation of the crystal during contact with the viscous medium, an electrical circuit driving the crystal must be capable of operating over a wide dynamic range of resonator loss, R
m
. This dynamic range of R
m
can be over several orders of magnitude. A shunt capacitance associated with the crystal detrimentally affects the performance of the oscillator circuit by making operation at a series resonance, f
s
, difficult and by limiting the dynamic loss range that the oscillator can tolerate. The series resonance, f
s
, is defined herein as the frequency where an inductance L
m
and a capacitance C
m
of a motional arm of the piezoelectric crystal are in resonance. At this frequency f
s
, if a shunt capacitance, C
0
, and a parasitic capacitance, C
p
, associated with the piezoelectric crystal are both small, then the crystal impedance is real and the oscillator circuit of the present invention is a real impedance phase oscillator which operates at or near a zero degree impedance phase angle.
A Lever oscillator circuit that has previously been used to drive a quartz crystal resonator for fluid sensing applications is disclosed in U.S. Pat. No. 5,416,448 which is incorporated herein by reference. The present invention represents an improvement over this prior art oscillator circuit by providing a circuit design which more accurately operates at f
s
with a large resonator shunt capacitance and which does not require automatic level control circuitry to determine R
m
. The present invention provides for operation of a piezoelectric crystal over a wide range of resonator loss by effectively cancelling out the shunt capacitance of the resonator via an active circuit and a dummy capacitance (i.e. a reference capacitor). The oscillator circuit of the present invention has a relatively small component count compared to prior circuits employing automatic gain control circuitry as disclosed in U.S. Pat. No. 5,416,448, thereby permitting the oscillator circuit of the present invention to be formed as a discrete circuit or as an integrated circuit (IC) with a reduced size, a reduced power consumption and a reduced manufacturing cost.
SUMMARY OF THE INVENTION
The present invention relates to a oscillator circuit for operating a piezoelectric crystal at a frequency of oscillation near a series resonance of the crystal. The oscillator circuit comprises a tuned gain stage which includes a limiting amplifier located in a feedback loop about a transistor, with a non-inverting output of the transistor being connected to drive the crystal at the frequency of oscillation, and with an inverting output of the transistor being connected to a resonant tank circuit to suppress oscillation of the crystal at frequencies other than near the series resonance. The oscillator circuit also includes a compensation circuit that effectively cancels any shunt capacitance associated with the piezoelectric crystal. The compensation circuit receives an input from the output of the limiting amplifier, with the compensation circuit providing an output that is connected to the crystal at the non-inverting transistor output. The compensation circuit is advantageous in that the oscillator circuit operating at a zero-impedance phase will oscillate at the series resonance frequency, f
s
, of the piezoelectric crystal independent of any shunt capacitance associated with the crystal thereby effectively cancelling out any effect on the frequency of oscillation due to the shunt capacitance. Thus, the compensation circuit acts to provide all the current flow through the shunt capacitance so that the oscillator circuit need not supply this current flow. The shunt capacitance associated with the crystal is defined herein as being the sum of a static capacitance, C
0
, which arises from internal fields across the crystal and any parasitic capacitance, C
p
, due to packaging of the crystal and wiring thereto.
The resonant tank preferably comprises a low-Q tank circuit that is used to connect the oscillator circuit to a power supply. This resonant tank peaks the gain of the tuned gain stage in a desired frequency range near the series resonance, f
s
, and helps to reject unwanted modes of oscillation. The tuned gain stage can further include a current source provided between the non-inverting transistor output and an electrical ground for direct-current (dc) biasing of the transistor.
The limiting amplifier is preferably a differential amplifier with one input connected to an inverting output of the transistor, and with another input being electrically grounded at the frequency of oscillation. The output of the limiting amplifier is connected to the input of the transistor to provide positive feedback for oscillation. The limiting amplifier also preferably provides a frequency output signal that is representative of the frequency of oscillation of the crystal, and a dc voltage output signal that is representative of a resonator loss component, R
m
, of the crystal.
The compensation circuit further includes a current mirror which provides dc and alternating-current (ac) current components at the non-inverting output of the transistor, with the ac current component being equal in magnitude and phase to a current flow through the shunt capacitance associated with the crystal at the frequency of oscillation. This ac current component effectively cancels out any shunt of the crystal due to the shunt capacitance by providing all the current flow through the shunt capacitance independent of the gain stage. The value of this ac current component is determined by a reference capacitor located in the compensation circuit. The reference capacitor is selected to have a value of capacitance that is equal to the shunt capacitance associated with the crystal. This can be done, for example, by providing the reference capacitor as a variable capacitor and tuning the variable capacitor during a calibration of the oscillator circuit.
The oscillator circuit of the present invention can operate the crystal with one side electrically grounded, and with a frequency of oscillation that is generally in the range of 1-100 MHz. This circuit can be formed as a discrete circuit using discrete components, or alternately can be formed, at least in part, as an integrated circuit (IC). Embodiments of the oscillator circuit of the present invention can be formed using either bipolar transistors or field-effect transistors (FETs). When the oscillator circuit is formed as an IC, certain components (e.g. the reference capacitor and tank circuit) can be outboard to the IC to allow adaptation of the IC to many different t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Active shunt capacitance cancelling oscillator circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Active shunt capacitance cancelling oscillator circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Active shunt capacitance cancelling oscillator circuit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3007677

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.