Active satellite dispenser for reusable launch vehicle

Aeronautics and astronautics – Spacecraft – Attitude control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06789767

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to hardware for the launch, transportation, transfer, and release of satellites, cargo, and other payloads in earth orbit. More particularly, the present invention relates to a satellite dispenser providing propulsion and avionics systems for the controlled release of multiple satellites
BACKGROUND OF THE INVENTION
The transportation of cargo to space is expensive. The high cost is partially attributable to the aggregation of multiple, costly individual operations that are needed to transport and deploy satellites and other cargo to orbit. The latter part of the orbital transportation operation, i.e., transporting the payload from low earth orbit to the desired final higher orbit, is typically accomplished by an upper, or final, stage. This stage is ignited and transports the payload to the final orbit. Sometimes this stage remains attached to the payload, satellite, or cargo; but it is usually discarded in orbit. Upper stages vary in their capability of independent actions from a passive, simple, small, solid rocket motor just providing additional propulsion capability, which goes in the direction it is pointed when ignited, to very capable, restartable, liquid rocket engines capable of multiple restarts and significant maneuvering using thruster(s) and related avionics. Some active upper stages are able to dispense multiple satellites.
Launch vehicles used to deploy satellites in a predetermined orbit are evolving from expendable, and partially expendable rockets, toward fully reusable launch vehicles (RLVs) capable of multiple reuse. The primary advantage of RLVs is the potential for significant cost savings. RLVs frequently utilize active satellite dispensers and upper stages. Satellite launch systems still include a device that couples the satellite to the launch vehicle; but in today's world, this dispensing hardware takes on a more active role than the simple release of the satellite in response to a control signal. Recent reusable vehicle advances, technological improvements, and commercial market forces are moving the satellite industry toward smaller, more sophisticated commercial networks of communications satellites requiring multiple satellites in various orbital planes around earth.
The increased demand for communication satellite networks and higher orbits has given rise to active, more capable, customer-sensitive satellite dispensers that satisfy the new privately-financed communication network markets. The new commercial networks require innovative satellites of different size, weight, and transportation requirements. Existing satellite dispensers lack the flexibility and cost effectiveness of reusable vehicles. Moreover, existing satellite dispensers lack subsystem commonality, propellant compatibility, and/or the ability to adapt to the emerging reusable launch vehicles. Existing satellite dispensers fail to adequately take advantage of the reusable vehicles' reusable shrouds and orbital satellite release techniques.
Previous dispensers stack multiple satellites vertically, and therefore typically employ discardable shrouds that can clutter the orbital environment with spent hardware, which can endanger other space operations. Shortly, international agreements are expected to limit the placement of satellites to those systems that minimize the debris impact on others.
U.S. Pat. No. 5,568,901 to Stiennon, entitled “Two Stage Launch Vehicle and Launch Trajectory Method,” is purported to be a fully reusable launch vehicle, but fails to mention anything of a satellite dispenser.
The space shuttle is a partly-reusable vehicle and has several expendable satellite assist modules, or third stages, but at significant cost and requiring extensive hardware dispensers specific to the shuttle payload bay and, in some cases, requiring the changing of the axial orientation of the satellite by a significant amount or to exit the payload bay via a Frisbee®-throwing method.
U.S. Pat. No. 5,242,135 to Scott et al., entitled “space Transfer Vehicle and Integrated Guidance System,” is a space transfer system capable of continuing the propulsive cycle of earlier stages, but lacks the full service structure system to handle the new generation of communications satellites. No provision for both forward and sideways satellite ejection appears to be available from this patent. No shroud reuse or any reuse of any hardware, except the space transfer vehicle, is implied. No provision in the hardware is evident for disposal at end of life.
U.S. Pat. No. 5,884,866 to Steinmeyer et al., entitled “Satellite Dispenser,” is a dispenser for the 1990s, but has no propulsion or other active subsystems. The post can accommodate the newer network communication satellites, but it appears the entire upper stage of the poorly defined launch vehicle must be taken to each individual orbit for satellite dispensing.
U.S. Pat. No. 5,337,980 to Homer et al., entitled “Spacecraft-to-Launch-Vehicle Transition,” is more a structural connection between a vehicle and a satellite, rather than a dispenser. The drawings seem to depict a rocket engine, but it appears to be a part of the satellite. The adapter and/or structural hardware appears to have no active dispensing function except a release capability.
U.S. Pat. No. 5,199,672 to King et al., entitled “Method and Apparatus for Deploying a Satellite,” is a solid rocket version of a dispenser designed to place many small satellites into a specific orbital plane and focuses on the specific design to accommodate the Pegasus. The four separate pallets are fired into different orbital planes by waiting to fire the solid rocket motors at different times as the earth turns below.
U.S. Pat. No. 5,816,539 to Stotelmeyer et al., entitled “Integrated Storage and Transfer System and Method for Spacecraft Propulsion Systems,” is an orbital assist module (OAM) built into the stack of an expendable launch vehicle (ELV). The orbital assist module propellant comprises hydrazine and is difficult to handle.
In contrast, the present invention uses propellants, preferably liquid propellants, used in a single, pressure-feed engine that preferably utilizes components having commonality with the reusable launch vehicle. This hardware commonality in engine, main propellants, pressurants, radiation-hardened avionics, and attitude control systems (ACS), including the propellant used in the ACS tanks, reduces the testing, procurement, ground handling, support systems, and—most importantly—the cost. The propellants used also lend themselves to increased ground safety and cost-effective operations within the present invention.
Although the present invention will be described with reference to a preferred embodiment that is designed to be used with the K-
1
reusable launch vehicle system, which includes a launch assist platform and an orbital vehicle (hereinafter, the K-
1
orbital vehicle, or the like) currently under development by Kistler Aerospace Corporation, it will be appreciated by one of ordinary skill in the art that the invention can be readily adapted for use with other launch systems without departing from the spirit and scope of the disclosed invention.
SUMMARY OF THE INVENTION
A primary object of the active dispenser is to transfer the satellite to a higher orbit and position it in the proper orbital location in a cost-effective manner.
An advantage of the present invention is the cost-effective combination of a reusable launch vehicle subsystem, including efficient propulsion subsystems, pre-engineered common computer avionics, propellant, pressurant, and attitude control thruster hardware subsystems, and a dispenser for multiple satellites.
An advantage of the active dispenser on a reusable launch vehicle is the ability to integrate commonality with subsystems used on the launch vehicle and/or satellite hardware providing cost-effective common subsystems through commonality in design, procurement, testing, and propellant loading.
Another advantage of the invention is the ability to integrate common ground hand

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Active satellite dispenser for reusable launch vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Active satellite dispenser for reusable launch vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Active satellite dispenser for reusable launch vehicle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3256593

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.