Active probe for an atomic force microscope and method of...

Measuring and testing – Surface and cutting edge testing – Roughness

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06189374

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to atomic force microscopes (AFMs) and, particularly, to an AFM and method of use thereof that combines an AFM Z position actuator and a self-actuated cantilever to provide high quality images at greatly increased imaging rates.
2. Description of the Related Art
An Atomic Force Microscope (“AFM”), as described in U.S. Pat. No. RE34,489 to Hansma et al. (“Hansma”), is a type of scanning probe microscope (“SPM”). AFMs are high-resolution surface measuring instruments. Two general types of AFMs include contact mode (also known as repulsive mode) AFMs, and cyclical mode AFMs (periodically referred to herein as TappingMode™ AFMs). (Note that TappingMode™ is a registered trademark of Veeco Instruments, Inc. of Plainview, N.Y.)
The contact mode AFM is described in detail in Hansma. Generally, the contact mode AFM is characterized by a probe having a bendable cantilever and a tip. The AFM operates by placing the tip directly on a sample surface and then scanning the surface laterally. When scanning, the cantilever bends in response to sample surface height variations, which are then monitored by an AFM deflection detection system to map the sample surface. The deflection detection system of such contact mode AFMs is typically an optical beam system, as described in Hansma.
Typically, the height of the fixed end of the cantilever relative to the sample surface is adjusted with feedback signals that operate to maintain a predetermined amount of cantilever bending during lateral scanning. This predetermined amount of cantilever bending has a desired value, called the setpoint. Typically, a reference signal for producing the setpoint amount of cantilever bending is applied to one input of a feedback loop. By applying the feedback signals generated by the feedback loop to an actuator within the system, and therefore adjusting the relative height between the cantilever and the sample, cantilever deflection can be kept constant at the setpoint value. By plotting the adjustment amount (as obtained by monitoring the feedback signals applied to maintain cantilever bending at the setpoint value) versus lateral position of the cantilever tip, a map of the sample surface can be created.
The second general category of AFMs, i.e., cyclical mode or TappingMode™ AFMs, utilize oscillation of a cantilever to, among other things, reduce the forces exerted on a sample during scanning. In contrast to contact mode AFMs, the probe tip in cyclical mode makes contact with the sample surface or otherwise interacts with it only intermittently as the tip is scanned across the surface. Cyclical mode AFMs are described in U.S. Pat. Nos. 5,226,801, 5,412,980 and 5,415,027 to Elings et al.
In U.S. Pat. No. 5,412,980, a cyclical mode AFM is disclosed in which a probe is oscillated at or near a resonant frequency of the cantilever. When imaging in cyclical mode, there is a desired tip oscillation amplitude associated with the particular cantilever used, similar to the desired amount of cantilever deflection in contact mode. This desired amplitude of cantilever oscillation is typically kept constant at a desired setpoint value. In operation, this is accomplished through the use of a feedback loop having a setpoint input for receiving a signal corresponding to the desired amplitude of oscillation. The feedback circuit servos the vertical position of either the cantilever mount or the sample by applying a feedback control signal to a Z actuator so as to cause the probe to follow the topography of the sample surface.
Typically, the tip's oscillation amplitude is set to be greater than 20 nm peak-to-peak to maintain the energy in the cantilever arm at a much higher value than the energy that the cantilever loses in each cycle by striking or otherwise interacting with the sample surface. This provides the added benefit of preventing the probe tip from sticking to the sample surface. Ultimately, to obtain sample height data, cyclical mode AFMs monitor the Z actuator feedback control signal that is produced to maintain the established setpoint. A detected change in the oscillation amplitude of the tip and the resulting feedback control signal are indicative of a particular surface topography characteristic. By plotting these changes versus the lateral position of the cantilever, a map of the surface of the sample can be generated.
Notably, AFMs have become accepted as a useful metrology tool in manufacturing environments in the integrated circuit and data storage industries. A limiting factor to the more extensive use of the AFM is the limited throughput per machine due to the slow imaging rates of AFMs relative to competing technologies. Although it is often desirable to use an AFM to measure surface topography of a sample, the speed of the AFM is typically far too slow for production applications. For instance, in most cases, AFM technology requires numerous machines to keep pace with typical production rates. As a result, using AFM technology for surface measurement typically yields a system that has a high cost per measurement. A number of factors are responsible for these drawbacks associated with AFM technology, and they are discussed generally below.
AFM imaging, in essence, typically is a mechanical measurement of the surface topography of a sample such that the bandwidth limits of the measurement are mechanical ones. An image is constructed from a raster scan of the probe over the imaged area. In both contact and cyclical mode, the tip of the probe is caused to scan across the sample surface at a velocity equal to the product of the scan size and the scan frequency. As discussed previously, the height of the fixed end of the cantilever relative to the sample surface can be adjusted during scanning at a rate typically much greater than the scanning rate in order to maintain a constant force (contact mode) or oscillation amplitude (cyclical mode) relative to the sample surface.
Notably, the bandwidth requirement for a particular application of a selected cantilever is generally predetermined. Therefore, keeping in mind that the bandwidth of the height adjustment (hereinafter referred to as the Z-axis or Z-position bandwidth) is dependent upon the tip velocity as well as the sample topography, the required Z-position bandwidth typically limits the maximum scan rate for a given sample topography.
Further, the bandwidth of the AFM in these feedback systems is usually lower than the open loop bandwidth of any one component of the system. In particular, as the 3 dB roll-off frequency of any component is approached, the phase of the response is retarded significantly before any loss in amplitude response. The frequency at which the total phase lag of all the components in the system is large enough for the loop to be unstable is the ultimate bandwidth limit of the loop. When designing an AFM, although the component of the loop which exhibits the lowest response bandwidth typically demands the focus of design improvements, reducing the phase lag in any part of the loop will typically increase the bandwidth of the AFM as a whole.
With particular reference to the contact mode AFM, the bandwidth of the cantilever deflection detection apparatus is limited by a mechanical resonance of the cantilever due to the tip's interaction with the sample. This bandwidth increases with the stiffness of the cantilever. Notably, this stiffness can be made high enough such that the mechanical resonance of the cantilever is not a limiting factor on the bandwidth of the deflection detection apparatus, even though increased imaging forces may be compromised.
Nevertheless, in contact mode, the Z position actuator still limits the Z-position bandwidth. Notably, Z-position actuators for AFMs are typically piezo-tube or piezo-stack actuators which are selected for their large dynamic range and high sensitivity. Such devices generally have a mechanical resonance far below that of the AFM cantilever brought in contact with the sample, typically around 1 kHz, thu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Active probe for an atomic force microscope and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Active probe for an atomic force microscope and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Active probe for an atomic force microscope and method of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2601864

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.