Optical: systems and elements – Optical modulator – Light wave temporal modulation
Reexamination Certificate
2001-10-01
2003-04-15
Dang, Hung Xuan (Department: 2873)
Optical: systems and elements
Optical modulator
Light wave temporal modulation
C359S290000, C359S291000, C359S298000
Reexamination Certificate
active
06549323
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to active optical systems and more particularly to an active optical system for phase-shifting desired portions of an incoming optical wavefront.
2. Description of the Related Art
Many types of active optical systems require the control of the optical wavefront or phase of a propagating laser beam. When an image propagates through turbid media, for example, the atmosphere, random fluctuations in the local index of refraction cause local fluctuations in the optical path length that the beam traverses. These fluctuations in path length lead to a randomization of the phase front contour, causing the image to be obscured. Using an adaptive optics or active optical control, the original phase state is restored, allowing the reconstruction of the original image. In the case of optical communications, the same kind of randomization can occur. In this case, the adverse result is that the optical beam cannot be focussed to a diffraction limited (limited by wavelength) spot, causing loss of information when the beam is introduced into a small diameter optical element, for example, an optical fiber. Active control and adaptive optics in this scenario allows one to reconstruct the original phase state so that the beam can be focussed to a small spot without loss of information. Typically, active optical systems make use of adaptive optical elements that are based on mechanical implementation. One example of this is a deformable mirror. The mirror contains a number of small actuators which push or pull on the mirror surface. In doing so, they compensate for the distortions in the beam phase by making some parts of the optical path shorter and some parts of the optical path longer. However, this implementation takes what is fundamentally an optical problem and turns it into a mechanical problem. It is desirable to use a non-mechanical system to accomplish the phase-shifting needed to recreate the original phase state of the optical beam.
There have been previous patents to use electro-optical means to perform adaptive optical processes. U.S. Pat. No. 5,396,364, entitled CONTINUOUSLY OPERATED SPATIAL LIGHT MODULATOR APPARATUS AND METHOD FOR ADAPTIVE OPTICS, issued to O'Meara et. al, discusses the use of a spatial light modulator for electro-optically addressed adaptive optics. A standard SLM is described, that incorporates an electronically “pixelized” modulator. The device incorporates a microlenslet array to physically separate the wavefront into small active areas that form the pixels. This device has several disadvantages. The electronic structure must be built directly into the device, causing greater difficulty in manufacture and limiting the resolution of the device to the number of electronic structures created. Also, since the modulation is caused by electronically driven means, instead of being optically driven, the speed of the device has inherent limitations.
U.S. Pat. No. 6,222,667, entitled ELECTRO-OPTIC LIGHT VALVE ARRAY, issued to Gobeli et, discloses a two-dimensional light valve array. It uses a pixelized substrate made of lanthanum modified zirconate-titanate. Electrodes are cut into recesses made in the substrate. Voltages which are applied to the individual pixels induce bi-refringence into the pixelized regions. Electronic control of the bi-refringence affects the light transmittance. The inventor does not discuss control of phase or wavefront in this device. As in O'Meara et.al. the device must be pixelized and electronic driving limits the speed at which controls can be performed.
SUMMARY
The present invention is an active optical system and method for phase-shifting desired portions of an incoming optical wavefront. A first control optics assembly receives an incoming optical wavefront and adjusts that incoming optical wavefront in accordance with first desired wavelength and beam propagation parameters. A driver element produces a driver optical wavefront. A second control optics assembly receives the driver optical wavefront and adjusts that driver optical wavefront in accordance with second desired wavelength and beam propagation parameters.
A combiner receives an output from the first control optics assembly and an output from the second control optics assembly. The combiner provides a combined, co-linear propagation output wavefront having an initial beam size. Spatial light modulator (SLM) addressing optics receives the combined, co-linear propagation output wavefront and produces a desired beam size for the combined, co-linear propagation output wavefront. The SLM receives the output from the SLM addressing optics and provides localized phased shifting of the resulting wavefront. SLM egressing optics receives the output of the SLM and returns the beam size of the wavefront to the initial beam size. The output of the SLM egressing element has desired portions of its phase shifted relative to the incoming optical wavefront.
The present performs phase control on an optical wavefront without utilizing a deformable mirror to compensate for phase distortions produced by atmospheric conditions. By altering the manner in which the imaging device is addressed, the local refractive index of the two-dimensional medium can be used to modulate or demodulate the wavefront at a single position within the wavefront. This results in a phase compensated wavefront.
REFERENCES:
patent: 5396364 (1995-03-01), O'Meara et al.
patent: 5521743 (1996-05-01), Holmes et al.
patent: 5526170 (1996-06-01), Esman et al.
patent: 6222667 (2001-04-01), Gobeli
Dang Hung Xuan
Ginsberg Lawrence N.
Tra Tuyen
LandOfFree
Active optical system for phase-shifting desired portions of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Active optical system for phase-shifting desired portions of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Active optical system for phase-shifting desired portions of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3094877