Active matrix display device

Drying and gas or vapor contact with solids

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06655767

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a technique which allows conducting a doping process or other chemical and physical treatments efficiently even at a low temperature.
2. Prior Art
Known processes for doping semiconductors with impurities include a diffusion process and an ion implantation process. The diffusion process comprises heating the semiconductor to a high temperature in the range of from 1000 to 1200° C. to make the impurities diffuse into semiconductors. In an ion implantation process, a predetermined portion of a semiconductor is bombarded with an ionized impurity which has been accelerated in an electric field.
The diffusion coefficient D of an impurity can be expressed with an exponential function of absolute temperature T as D=D
0
·exp[−E
a
/kT], where D
0
is the diffusion coefficient at T=∞, E
a
is the activation energy, and k is the Boltzmann constant. This equation describes the increase of diffusion coefficient with elevating temperature; accordingly, it has been common practice to carry out diffusion at temperatures as high as possible, preferably, at 1000° C. or higher. In the ion implantation process, on the other hand, it is necessary to activate the impurity and to remove the defects in the crystal lattice damaged by the ion bombardment; i.e., the implantation is followed by high-temperature annealing in the temperature range of from 600 to 950° C.
Recently, some types of active-matrix liquid crystal display devices using a thin-film transistor (TFT) provided on a glass substrate as the switching device have brought into practical use. The source and drain regions in the TFTs of those display devices are, in general, formed monolithically with the ohmic contacts using amorphous silicon having either of the N-type and P-type conductivity. Because the TFT used in this case is of an inverse stagger type, it likely produces a parasitic capacitance ascribed to its structure. To prevent this unwanted capacitance from developing, there has been made studies on making use of a TFT having its source and drain being formed in a self-aligned structure. However, the source and drain can be formed in a self-aligned manner only by the use of an ion implantation or ion shower process. Then again, a post annealing at the temperature range of from 600 to 950° C. should be carried out to activate the impurities and to recover the damage. Taking into consideration that the general purpose economical glass resists only up to a temperature of about 600 to 700° C., those ion implantation and ion shower processes are not feasible in an industrial operation.
As another means to circumvent the problem concerning the recover of thermal damage an the glass substrates, there is known a technology, i.e., impurity doping using a laser beam irradiation. There is known, for example, a process which comprises first covering the intended portion of the surface of the semiconductor with a thin film of the impurity, and then irradiating a laser beam thereto to melt the thin film of the impurity simultaneously with the surface of the semiconductor. In this manner, it is possible to dissolve the impurity into the surface of the molten semiconductor.
In the process above using an excimer laser beam irradiation, the impurity doping can be carried out without causing thermal damage on the glass substrate. However, the process requires an additional step of coating the semiconductor with the impurity. Conventionally, a coating process such as spin coating has been used for this step. However, the quality of this coating is process-determining, because the concentration of the doped impurity depends on the evenness of this coating. Thus, this process is far from being an ideal one. Furthermore, this coating is formed generally using an organic solvent as the solution medium. The use of such an organic solvent sometimes allows unfavorable elements such as carbon, oxygen, and nitrogen to enter into the semiconductor to impair the properties thereof.
In the light of the circumstances described above, the present invention has been achieved with an aim to provide a laser-beam doping technology using particularly an excimer laser, said technology being composed of simplified process steps and free from invasion of foreign elements into the semiconductor during the process. Accordingly, the present invention provides, with an object to simplify the process and to prevent inclusion of undesirable elements, a doping process using a high purity doping material in its gas phase in the place of the conventional solid or liquid phase doping materials. It is another object of the present invention to increase the doping efficiency.
Still other objects of the present invention include doping of elements into, in addition to semiconductors, various types of materials inclusive of insulators and conductors, as well as modifying materials and surfaces thereof. There can be specifically mentioned, for example, doping of phosphorus into a silicon oxide film.
SUMMARY OF THE INVENTION
The present invention provides an impurity doping process for imparting either of the N-type and P-type conductivity to the sample semiconductor, which comprises irradiating a laser beam to the surface of a semiconductor sample in a high purity reactive gas atmosphere containing an impurity which renders the semiconductor N-conductive or P-conductive. It is known, however, based on the acquired knowledge of the present inventors, that the process at temperatures as low as the room temperature is yet to be improved to achieve sufficient diffusion of the elements. In the process of the present invention, the laser beam is irradiated to the semiconductor with the semiconductor being maintained at a temperature higher than room temperature.
An embodiment according to the present invention provides, accordingly, a process which comprises heating the sample and maintaining it to at least 200° C. during the irradiation of a laser beam, thereby accelerating diffusion of the impurity elements and to dope the semiconductor with the impurity at a high concentration. The temperature to which the substrate is to be heated depend on the type of the semiconductor, and is in the range of from 250 to 500° C., preferably from 300 to 400° C.; in the case of polysilicon (polycrystalline silicon) and semi-amorphous silicon.
Thus heating the semiconductor is not only advantageous for the diffusion of the impurities, but also the semiconductor itself more readily recovers the temporarily lost high crystal-linity due to laser beam irradiation, because heating the sample provides thermally a sufficient relaxation time. A sample without being heated and subjected to an irradiation of a laser beam, particularly to a beam of a laser operating in a pulsed mode, experiences a typical rapid heating and rapid cooling. Hence, such samples are apt to turn into an amorphous state. More specifically, the sample is instantaneously heated to a temperature as high as 1000° C. or even higher, but is then cooled to room temperature during the next period of several hundreds of nanoseconds. If we consider a case in which the sample is silicon and in which the sample is heated to the temperature range above, the time necessary to reach the lower limit of the crystallization temperature, i.e., about 500° C., is calculated to be 10 times as long as that necessary to cool the sample to room temperature. If the duration of laser beam irradiation exceeds a certain duration at this step, the silicon melts to develop a convection which carries the impurities deep into the internal of the silicon. On the other hand, if a pulsed laser beam does not endure for a certain time, the silicon crystallizes into a solid to give a so-called semi-amorphous phase. In this case, the impurities undergoes solid-phase diffusion to enter the internal of the silicon.
It is unfavorable to heat the semiconductor to an excessively high temperature. At too high a temperature, the reactive gas itself undergoes pyrolys

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Active matrix display device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Active matrix display device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Active matrix display device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3151417

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.