Active engagement system for engaging a snowboard boot to a...

Land vehicles – Skates – Shoe attaching means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S014220

Reexamination Certificate

active

06557884

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed generally to the filed boots and bindings for gliding sports, and more particularly, to the field of snowboard boots and bindings.
DESCRIPTION OF THE RELATED ART
Specially configured boards for gliding along a terrain are known, such as snowboards, snow skis, water skis, wake boards, surf boards and the like. For purposes of this patent, “gliding board” will refer generally to any of the foregoing boards as well as to other board-type devices which allow a rider to traverse a surface. For ease of understanding, however, and without limiting the scope of the invention, the inventive boot, binding and interface systems for a gliding board to which this patent is addressed is discussed below particularly in connection with a snowboard. However, it should be appreciated that the present invention is not limited in this respect, and that the aspects of the present invention described below can be used in association with other types of gliding boards.
Conventional snowboard binding systems used with soft snowboard boots are one of two general types. A first type, known as a tray binding, typically includes a rigid high-back piece against which the heel of the boot is placed, and one or more straps that secure the boot to the binding. Such bindings can be somewhat inconvenient to use because after each run, the rider must unbuckle each strap of the rear binding to release the boot when getting on the chairlift, and must re-buckle each strap before the next run. To address those convenience concerns, a second type of binding known as a step-in binding has been developed that typically does not employ straps, but rather includes one or more strapless engagement members into which the rider can step to lock the boot into the binding. Some of these systems include a handle or lever that must be actuated to move one of the engagement members into and out of engagement with the snowboard boot, and therefore, are not automatically actuated by the rider stepping into the binding. Furthermore, most step-in systems include a metal engagement member on the binding and a corresponding metal engagement member on the boot, such that when the boot is engaged with the binding, it is held rigidly into the binding by the metal-to-metal engagement interface.
Many riders are unhappy with conventional step-in bindings for two reasons. First, most step-in bindings do not have the feel of a conventional tray binding when riding. In particular, the straps in conventional tray bindings allow the rider's foot to roll laterally when riding, which is a characteristic desired by many riders. In contrast, the rigid metal-to-metal interface employed in most step-in systems between the boot and binding does not allow for any foot roll, which results in a ride having a feel that many riders find to be unacceptable. A second problem with most step-in systems is that the boot includes a rigid sole, making the boot very uncomfortable to walk in. In addition, many step-in systems include a relatively large metal plate attached to the sole of the boot for interfacing with the binding, which further reduces the comfort of the boot when walking.
In view of the foregoing, it is an object of the present invention to provide an improved system for engaging a snowboard boot to a snowboard.
SUMMARY OF THE INVENTION
One embodiment of the invention is directed to a system for mounting a rider to a snowboard. The system comprises a snowboard boot to receive a foot of the rider, the snowboard boot including an outer sole having a heel area, an arch area and a toe area; a snowboard binding to be mounted to the snowboard; and an interface having at least one mating feature adapted to be releasably engaged by the snowboard binding, the interface further including at least one strap adapted to mount the interface to the snowboard boot. The outer sole of the snowboard boot includes a recess rearward of the arch area that is adapted to receive the interface so that the interface does not protrude below the outer sole when the interface is mounted to the snowboard boot.
Another embodiment of the invention is directed to an interface for use in a system for mounting a rider to a snowboard, the system comprising a snowboard binding to be mounted to the snowboard, a snowboard boot, and the interface. The interface comprises a body having at least one mating feature adapted to be releasably engaged by the snowboard binding, the body further including a base that is adapted to pass under the sole of the snowboard boot, the base having a non-planar contoured upper surface that is adapted to fit within a recess in a sole of the snowboard boot; and at least one strap, supported by the body, adapted to mount the interface to the snowboard boot.
A further embodiment of the invention is directed to a system for mounting a rider to a snowboard. The system comprises a snowboard boot to receive a foot of the rider; a snowboard binding to be mounted to the snowboard; and an interface having at least one strap adapted to mount the interface to the snowboard boot, the interface further including at least one mating feature adapted to be releasably engaged by the snowboard binding, the at least one mating feature including at least one engagement pin that extends outwardly from medial and lateral sides of the interface and is circular in cross-section.
A further embodiment of the invention is directed to an interface for engaging a snowboard boot to a snowboard binding. The interface comprises a body having at least one mating feature adapted to be releasably engaged by the snowboard binding, the at least one mating feature including at least one engagement pin that extends outwardly from medial and lateral sides of the interface and is circular in cross-section; and at least one strap, supported by the body, adapted to mount the interface to the snowboard boot.
Another embodiment of the invention is directed to a system for mounting a rider to a snowboard. The system comprises a snowboard boot to receive a foot of the rider, the snowboard boot including a sole having a recess; a snowboard binding to be mounted to the snowboard; and an interface. The interface has a body including a base that is adapted to pass under the sole of the snowboard boot, the base having a non-planar contoured upper surface that is adapted to fit within the recess in the sole of the snowboard boot; at least one mating feature that is supported by the body and is adapted to be releasably engaged by the snowboard binding; and at least one strap that is supported by the body and is adapted to mount the interface to the snowboard boot.
A further embodiment of the invention is directed to a snowboard binding to mount a snowboard boot to a snowboard, the snowboard binding comprising a base having a toe end and a heel end; and a guide, supported by the base, that is adapted to guide the snowboard boot back toward the heel end of the base when the snowboard boot is stepped into the binding.
Another embodiment of the invention is directed to a snowboard binding comprising a baseplate; a heel hoop mounted to the baseplate, the heel hoop being hinged for rotation relative to the baseplate about a first axis; and a high-back supported by the heel hoop.
A further embodiment of the invention is directed a snowboard binding to mount a snowboard boot to a snowboard, the snowboard boot including at least one pin extending from medial and lateral sides thereof. The snowboard binding comprises a base having medial and lateral sides; a pair of engagement cams each mounted to one of the medial and lateral sides of the base for rotation between a closed position to engage the at least one pin and an open position to release the at least one pin; at least one lever that is adapted to move the pair of engagement cams from the closed position to the open position; and a cocking mechanism that is adapted to maintain the pair of engagement cams in the open position upon release of the at least one lever.
A further embodiment of the present inv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Active engagement system for engaging a snowboard boot to a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Active engagement system for engaging a snowboard boot to a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Active engagement system for engaging a snowboard boot to a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3030367

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.