Active deck suspension system

Ships – Building – Freighters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C114S191000

Reexamination Certificate

active

06763774

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a deck assembly for marine vessels, and more particularly to an active deck suspension system which incorporates impact force dampeners or shock absorbers beneath an area of the occupant deck, to reduce or eliminate the effects of such forces or vibrational fatigue and provide for a more comfortable and stable ride.
2. Description of Related Art
Hull and deck designs in the marine industry have heretofore attempted to address the problem of reducing the deleterious effects of impact forces acting upon the hull as the vessel is cruising in high seas, rough or choppy waters. However, prior attempts to minimize the effects of wave force energy, and provide a more comfortable ride for the vessel operator or passengers involve overly complicated designs which are faulty in application and/or impractical from the standpoint of engineering designs and financial considerations. Although the prior art has addressed the general principles concerning stabilizing inner hulls or decks through the use of cushioning means or other dampeners attempting to reduce undesirable shock forces encountered largely by the outer hull, the industry heretofore has failed to provide an improved, dynamic, and effective suspension system.
The prior art has attempted to solve these problems in a variety of ways. For example, U.S. Pat. No. 6,182,596 issued to Johnson, is entitled “System for Minimizing the Effects of Shock and Vibration in a High Speed Vessel,” and teaches of a shock absorbing system designed for inclusion in high speed Cigarette boats, and incorporates a complete inner hull, which is stabilized through a complicated damper and spring linkage assembly placed about the perimeter of the inner hull. There are numerous spring and damper support mechanisms secured to the side walls of the outer hull, attempting to cushion both vertical motion, as well as translational motion. The inner hull constitutes a “superstucture,” which is complete in and of itself, and is essentially a doubled-hull vessel, as opposed to a conventional hull and deck construction. Further, the '596 system includes numerous torsion bar assemblies which are inaccessible between the two (2) hulls.
U.S. Pat. No. 6,176,190 issued to Ozga, is entitled “Suspension System for a Speedboat,” and attempts to provide dynamic isolation of the deck by incorporating a series of dampeners and multi-axes pivot mountings to account for pitch, yaw, and roll motion. Ozga '190 also discloses, in one embodiment, a complete inner hull for a mono-hull vessel, and also has application for catamarans.
U.S. Pat. No. 5,348,265 issued to Burg, is entitled “Air Cushion Supported Secondary Structure,” and teaches of a pressurized gas cushioning system wherein an enormous internal passenger cabin is supported in its entirety by pressurized gases. A complicated blower and duct assembly is designed into the outer vessel, and supplies gas through the sealed duct and chamber system. The internal cabin is supported in a secondary manner through actuators and pivoting connection points.
U.S. Pat. No. 2,617,377 issued to Evans, is entitled “Boat Construction,” and discloses an arcane design which incorporates a central, gyroscopic wheel which supports a deck segment. The deck can move with respect to the hull via the gyroscope, and a complex linkage system which includes universal joint pivot points, roller assemblies, springs, and cables.
The prior art, therefore, fails to provide a dynamic deck suspension assembly, particularly for a conventional hull and integral deck, which can be readily incorporated into current manufacturing methods and vessel designs, is structurally sound, operationally efficient, and cost effective. Further, such a system is needed which constantly monitors loads placed upon the select deck area, and automatically compensates for impact forces acting upon the hull.
Accordingly, what is needed in the marine industry is an improved active deck suspension system which overcomes the problems associated with complex and impractical mechanical designs which require extensive alterations in vessel construction, provide numerous components which are subject to extensive maintenance or component failure in marine conditions, or are otherwise impractical. The deck suspension area must not impede general performance of the vessel when operating at relatively high speeds or in rough seas, must be integral with remaining, rigid deck sections, and must be easy to install and maintain. It is, therefore, to the effective resolution of the aforementioned problems and shortcomings of the prior art that the present invention is directed. However, in view of the deck designs in the marine industry in existence at the time of the present invention, it was not obvious to those persons of ordinary skill in the pertinent art as to how the identified needs could be fulfilled in an advantageous manner.
SUMMARY OF THE INVENTION
The present invention contemplates an improved and modified dynamic deck suspension platform, which is integral with a conventional boat deck, mounted within a hull. A boat hull generally includes a bottom section which can be of a semi-V or deep-V design, although a hull of any shape can practice the instant invention. The vessel further includes sidewalls, gunnels, a fore or bow area, as well as an aft section and transom.
The improved design includes a chassis or frame which can be discontinuous, and is mounted in the hull in a generally vertical plane, and transversely positioned with respect to the longitudinal axis of the vessel. In one embodiment, the chassis constitutes a mechanical insert, and supports dampening cylinders or torsion springs which act as shock absorbers, on opposite ends of the chassis. At its uppermost section, the chassis includes an essentially horizontal beam which supports the deck section of the instant invention. At its lowermost section, the chassis incorporates a geometric shape which matches the desired hull shape, and in certain embodiments is of a semi-V design. The dampening means can be mounted in a generally upright position, between the upper and lower sections of the chassis.
Additionally, torsion control plates are pivotally and hingedly mounted about the center of the chassis, between the dampeners. This torsion control means maintains the chassis components in a generally coplanar position, and limits movement of the upper section to vertical movement. That is, the torsion control means prevents side-to-side (or horizontal) movement, as well as translational or rotational movement of the upper section, which in turn prevents such movement of the suspended deck area.
Emergency actuators, or support jacks, are available at the option of the operator, or in the event of failure of the primary dampening means. The emergency actuators maintain the suspended deck area in an upright position, flush with the main vessel deck, and constitute a lockout feature. The actuators could be manually operated as well.
In a particular embodiment, pneumatic cylinders are used as the dampeners or shock absorbers, and a component board provides the air compressor, reserve air tank, pressure monitoring gauges, and system control electronics. The system control circuitry includes a plurality of reed switches and solenoids, timers, and enablement switches. The system includes electronic components and circuitry, electromagnetic control components, and dynamic monitoring, such that the loads or shock forces acting upon the suspended deck area are constantly monitored, and the system automatically adjusts the pressure independently in the pneumatic cylinders, and the expansion or retraction of the cylinder rods in response thereto. Thus, the system automatically compensates for impact forces or wave energy acting upon the hull or deck section, and maintains the resistive forces or “stiffness” of the suspended platform in a desired condition.
The foremost section of the suspended deck area is securedly attached to the top of t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Active deck suspension system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Active deck suspension system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Active deck suspension system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3185931

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.