Active compensation for changes in the direction of drop...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06561616

ABSTRACT:

FIELD OF THE INVENTION
This invention relates in general to inkjet printheads and, more specifically, to control in the directionality of ink drops ejected from a printhead in order to improve image quality. More particularly, the invention relates to a method of modifying a nozzle cavity space so as to compensate for the effects of defects in an inkjet printhead by altering the direction of ink drops ejected from a nozzle.
BACKGROUND OF THE INVENTION
Without limiting the scope of the invention, its background is described in connection with inkjet printers, as an example.
Modern color printing relies heavily on inkjet printing techniques. The term “inkjet” as utilized herein is intended to include all drop-on-demand or continuous inkjet printer systems including, but not limited to, thermal inkjet, piezoelectric, and continuous, which are well known in the printing industry. Essentially, an inkjet printer produces images on a receiver medium, such as paper, by ejecting ink droplets onto the receiver medium in an image-wise fashion. The advantages of non-impact, low-noise, low-energy use, and low cost operations, in addition to the capability of the printer to print on plain paper, are largely responsible for the wide acceptance of inkjet printers in the marketplace.
The printhead is the device that is most commonly used to direct the ink droplets onto the receiver medium. A printhead typically includes an ink reservoir and channels, which carry the ink from the reservoir to one or more nozzles. Typically, sophisticated printhead systems utilize multiple nozzles for applications such as high-speed continuous inkjet printer systems, as an example. Continuous inkjet printhead device types include electrostatically controlled printheads and thermally steered printheads. Both printhead types are named according to the means used to steer ink droplets ejected from nozzle openings.
It is well known in the art of inkjet printing that image quality suffers from a failure to accurately control the direction from which ink drops exit the printhead. Variations in the direction of ink drops ejected from a given nozzle from a desired direction of ejection (usually perpendicular to the printhead surface) can occur due to changes in the nozzle during operation, as a result of manufacturing defects present before operation, or both. In most instances, repairs are too difficult and costly, resulting in scrapped parts and decreased manufacturing yields. Accordingly, a cost effective way of increasing printhead lifetimes and printhead production yields would be advantageous.
For any given nozzle, the direction of the exiting ink drop stream is controlled by the physical characteristics of the nozzle. Where misdirection occurs, the ink drops can produce printing artifacts such as random placement errors between subsequent drops from a single nozzle or placement errors of drops from one nozzle with respect to those from another nozzle. Variations in the direction of ink drops ejected from a given nozzle may occur over a variety of time scales. For example, in Bubble Jet printheads, made by Canon Company, rapid variations may occur when bubbles nucleate randomly on the surfaces of heaters, causing random variations in the velocity and direction of ejected ink drops from each nozzle. Variations in the direction of ejected ink drops may also be caused by sources external to the inkjet printhead such as, for example, vibrations of the inkjet printer. It is difficult or impossible to correct such random variations in the direction of ejected ink drops, which typically change rapidly with time.
In other cases, factors causing deviation of the direction of ejected ink drops from a desired direction can occur slowly over a long period of time. Such slowly changing variations may arise, for example, from gradual changes in the material properties of the nozzle, such as changes in the stress of the materials comprising the nozzle or surrounding the nozzle openings, from changes in the resistance of heater materials during operation, or from wear of nozzle materials during operation.
In still other cases, factors causing deviation of the direction of ejected ink drops from a desired direction can be essentially permanent. Deviations caused by manufacturing defects in nozzles, for example defects that alter or vary the shape of the nozzle openings, are essentially permanent. Permanent deviations may also arise after a period of time of operation of a nozzle. For example, a piece of material may become permanently chipped away from a portion of a nozzle after a period of time of operation, or a piece of material may lodge permanently within a nozzle during operation.
Thus, it is desirable to compensate for slowly changing variations in the directionality of ejected ink drops. For slowly changing variations, compensation may be needed from time to time during operation. It is also desirable to compensate for permanent changes in the directionality of ejected ink drops in order to improve image quality and increase manufacturing yield. Compensation cannot be applied before operation of the nozzles, since it is generally not possible to predict the direction and magnitude of deviations in the direction of ejected drops for a particular nozzle, which occur after operation. Compensation applied after or during operation of nozzles is herein referred to as active compensation.
Substantial effort has been directed toward active compensation for slowly changing variations in the direction of drop ejection for drop-on-demand printers, as discussed and illustrated, for example, in U.S. Pat. No. 4,238,804, assigned to Xerox Corporation, and U.S. Pat. No. 3,877,036, assigned to IBM, which teach measuring the position of ejected ink drops and compensating for variations from the ideal direction by electrostatic means. While such electrostatic deflection can be used to direct ink in a desired direction, as is well known in the art, electrostatic deflection in these cases adds mechanical complexity. Also, correction techniques of this type are largely ineffective in cases where large variations in the direction of ejected ink drops occur.
U.S. Pat. No. 5,592,202, assigned to Laser Master Corporation, teaches an electronic means to correct inaccuracies in ink drop placement by advancing or retarding the time of a drop-on-demand actuation pulse. However, this method does not correct variations in both of the directions of ink drop ejection in a plane perpendicular to the direction of drop ejection, as it is more suited to adjusting ink drop placement only in the scan direction of the printhead. Moreover, not all printhead circuits can be easily adapted to control the firing times of individual ink drops, since the firing pulses may be derived from a common clock.
U.S. Pat. No. 5,250,962, assigned to Xerox Corporation, teaches the application of a moveable vacuum priming station that can access groups of nozzles to remove entrained air in one or more nozzles. Although entrained air is known in the art to cause variations in the direction of ink drop ejection, it is only one of many mechanisms causing variations. Also, entrained air principally refers to failure of the ink to fill the printhead, not to a change in the head itself. Removal of trapped air serves to restore the nozzle to its original condition, but does not alter the physical characteristics of the nozzle.
Other prior art techniques for achieving compensation include the selection of one nozzle among a plurality of redundant nozzles for printing a particular imaging pixel, the preferred nozzle having favorable ink drop ejection characteristics. However, redundancy selection techniques of this type are complex in nature and require substantial real estate space on the printhead form factor to implement. Such methods also increase cost and/or reduce productivity.
In the case of continuous inkjet printheads using electrostatic steering of ink drops, as in the current generation of commercialized continuous inkjet printheads, for example those manufactured by Scitex C

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Active compensation for changes in the direction of drop... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Active compensation for changes in the direction of drop..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Active compensation for changes in the direction of drop... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3003857

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.