Active bandage suitable for applying pulsed...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S155000, C607S103000, C607S050000, C600S014000, C600S015000

Reexamination Certificate

active

06463336

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention relates to an active radio-frequency (RF) or microwave bandage which may be used for such medical therapeutic purposes as (1) promoting improved healing of soft-tissue wounds and incisions proximate to the skin of a patient and/or (2) enhancing the efficacy of transdermal drug delivery to a patient.
2. Description of the Prior Art
It is known that pulsed RF energy is helpful in treating a variety of injuries and diseases, including promoting the healing and regrowth of both bone and soft tissue injuries, and treating osteoathritis, bursitis, and pelvic inflammatory disease. Usually, such treatments employ relatively low-frequency pulsed RF (e.g., 27.12 Mhz). In this regard, reference is made to the following articles in the literature:
1. M. J. Lobell, “Pulsed High Frequency and Routine Hospital Antibiotic Therapy in the Management of Pelvic Inflammatory Disease: A Preliminary Report”, Clinical Medicine, August 1962.
2. B. M. Cameron, “Experimental Acceleration of Wound Healing”, American Journal of Orthopedics, November 1961.
3. J. H. Goldin et al, “The Effects of Diapulse on the Healing of Wounds: A Double-Blind Randomised Controlled Trial in Man”, British J. of Plastic Surgery, 34, 1981.
4. V. Barclay et al, “Treatment of Various Hand Injuries by Pulsed Electromagnetic Energy (Diapulse)”, Physiotherapy, vol. 69, June 1983.
5. H. Itoh et al, “Accelerated Wound Healing of Pressure Ulcers by Pulsed High Peak Power Electromagnetic Energy (Diapulse)”, Decubitus, February 1991.
It is also known that transdermal drug delivery may be used for local treatment of diseases of the skin, and also may be used with a small number of drugs for systemic drug delivery. The advantages of transdermal drug delivery over pills and injections include the avoidance of degradation due the gastrointestinal tract and first-pass of the liver, potential for steady or time controlled delivery of drugs, and targeted delivery to areas of diseased skin. Further, it is known that transdermal drug delivery can be enhanced by means of either pulsed DC electroporation or pulsed high power RF or microwave electroporation. In this regard, reference is made to the following articles in the literature:
6. M. R. Prausnitz et al, “Electroporation of Mammalian Skin: A mechanism to Enhance Transdermal Drug Delivery”, Proc, Natl. Acad. Sci. USA, Vol. 90, pp 10504-10508, Medical Sciences, November 1993.
7. R. Vanbever et al, “Transdermal Delivery of Metropol by Electroporation”, Pharmaceutical Research, Vol. 11, pp. 1657-1662, Nov. 11, 1994.
8. J. E. Riviere and M. C. Heit, “Electrically-Assisted Transdermal Drug Delivery”, Pharmaceutical Research, Vol. 14, pp. 6g7-6g7, June 1997.
9. C. Domenge et al, “Antitumor Electrochemotherapy; New Advances in the Clinical Protocol”, Cancer, Vol. 77, pp. 956-963, Mar. 1, 1996.
10. F. Sterzer, “Method for Enhancing Delivery of Chemotherapy Employing High-Frequency Force Fields”, U.S. Pat. No. 5,368,837 Feb. 7, 1995.
Problems which now exist in the implementation of the treatments of the aforesaid prior art are that (1) Diapulse apparatus incorporates an RF generator having a permanently attached RF applicator which is in non-contacting spatial relationship with skin of a patient for radiating relatively low-frequency pulsed RF energy to the treated soft tissue underlying this skin and (2) electrical contacts have to be securely attached to the area of the patient to be treated (except for treating pressure ulcers, as described above in H. Itoh et al. (article 5)) and may have to be implanted in the patient. The discomfort to the patient of this type of implementation is particularly great in those cases in which the duration of the treatment must extend continuously over a relatively long time or must be repeated many times with a relatively short time interval between successive treatments.
Further, known in the art, are planar antenna structures that can consist of a microstrip configuration arranged in any one of various shapes of radiating elements. A microstrip planar antenna structure is fabricated from a printed circuit board by photoetching or micromachining a pre-metallized surface on one side of an insulated substrate with tightly controlled dimensions and dielectric constant in accordance with the particular shape of either a single one or an array of desired radiating elements. The proper frequency is determine by the dielectric constant of the substrate and the dimensions of each desired radiating element. Usually, the other side of the insulated substrate is also pre-metallized to provide a ground plane that functions as a reflector or a shield. Also, known in the art, is a planar antenna structure configured as a slotline antenna.
SUMMARY OF THE INVENTION
The active RF or microwave bandage of the present invention, which may employ any of various configurations of planar microstrip or slotline antenna structures, solves the implementation problem of the treatments of the aforesaid prior art by providing a practical, convenient, and effective means of implementation that would be both widely available to physicians and nurses and be much more comfortable to the patient. More specifically, the present invention is directed to an active bandage incorporating at least one pliable planar antenna that is conformable to a selected area of the skin of a patient for use in therapeutically treating soft tissue of the patient underlying the selected area with pulsed electromagnetic field (PEMF) energy of a given frequency radiated from the planar antenna. The PEMF energy is supplied to the planar antenna by means including a PEMF generator (which generator may be a miniaturized portable generator employing a battery power supply that permits the patient being treated to be ambulatory).


REFERENCES:
patent: 4932420 (1990-06-01), Goldstein
patent: 4982742 (1991-01-01), Claude
patent: 5101836 (1992-04-01), Lee
patent: 5314401 (1994-05-01), Tepper
patent: 5478303 (1995-12-01), Foley-Nolan et al.
patent: 5983134 (1999-11-01), Ostrow
patent: 6174276 (2001-01-01), Blackwell
patent: 6418345 (2002-07-01), Tepper et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Active bandage suitable for applying pulsed... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Active bandage suitable for applying pulsed..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Active bandage suitable for applying pulsed... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2997026

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.