Activated nickel screens and foils

Metal treatment – Process of modifying or maintaining internal physical... – Processes of coating utilizing a reactive composition which...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S251000, C148S274000, C148S283000, C427S304000, C427S328000, C427S376800

Reexamination Certificate

active

06491766

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a coating composition and process that provide an activated coating on nickel screen. The coated nickel screen can be used as the cathode in an electrolytic cell that is designed for the generation of hydrogen and oxygen from an aqueous alkaline solution. A preferred coating is characterized by the presence of two activated layers with a high surface area, a multitude of fissures and a nickel to aluminum weight ratio greater than 20/1 in the top layer and greater than 4/1 in the bottom layer that is adjacent to the nickel substrate.
BACKGROUND OF THE INVENTION
Activated nickel screens are currently being used for the synthesis of methane and the generation of hydrogen and oxygen in electrolytic cells containing an aqueous alkaline medium. In methane synthesis a mixture of carbon monoxide and hydrogen are passed over the activated nickel screens to form methane and water. In the production of hydrogen and oxygen in electrolytic cells, the activated nickel screens are used as the cathode. The activated screens, when used as the cathode in an electrolytic cell, lower the overvoltage and show more than a 20% improvement in efficiency over untreated nickel screens. It is believed that the superiority of the activated nickel screens is due, at least in part, to the increased surface area that results from the activation step. The activated screens have been used in electrolytic cells for the generation of hydrogen and oxygen for about ten years.
Hydrogen is presently being used as a fuel for industrial applications as well as a fuel for automobiles. The advantage of hydrogen as an automobile fuel include a greater energy release per unit weight of fuel and the absence of polluting emissions including carbon monoxide, carbon dioxide, nitrogen oxide, sulfur oxides, hydrocarbons, aldehydes, and lead compounds (i.e., the combustion products of hydrogen are primarily water with minute traces of nitrogen oxide).
The known process to produce the activated nickel screens included placing each individual nickel screen in a “pack” composed of a powder mixture containing aluminum, aluminum oxide and a halide salt activator followed by a heating operation (i.e., for several hours at elevated temperatures). This is known as the Classical Pack Cementation process and is disclosed in U.S. Pat. No. 4,349,612. The chemistry of this process during the heating step includes the reaction of the halide with aluminum to yield gaseous aluminum sub halide such as aluminum sub chloride (AlCl). As this gas passes over the nickel screen, it decomposes and deposits aluminum on the nickel surface. The process is carried out for 20 to 30 hours at 800-1200° F. in a hydrogen atmosphere. At this temperature the deposited aluminum diffuses into the nickel surface to form a coating comprising an aluminum rich nickel aluminide (Ni
2
Al
3
). The process is labor intensive, requires long processing times, gives off obnoxious dusts during loading of the screens and emits corrosive and toxic halide gases during the heating operation. In order to prevent contamination of the environment, the effluent gases must be scrubbed under alkaline conditions to neutralize and remove the toxic gases. In addition, after each processing cycle, the coating powder must be sifted and replenished for the next load of screens. The powder mixture is sensitive to water absorption and must be kept dry when not in use. Otherwise the moisture will react with the activator in the pack and curtail its function.
After the formation of the nickel aluminide coating on the nickel screens, the screens are immersed in a 20% solution of sodium hydroxide for about 40-60 minutes at 180-200° F. to selectively leach out at least a portion of the aluminum from the nickel aluminide coating. The screens are then rinsed in water and passivated by immersion for one hour in hot water at 180 to 212° F. followed by a one hour immersion in a water solution containing 2-5% hydrogen peroxide at 74° F. followed by rinsing in water and finally drying in an oven at 140-160° F. to remove all water from the screen. After the foregoing processing, the screens are ready to be used as cathodes in electrolytic cells containing an aqueous alkaline medium (for example, 25% NaOH or 25% KOH in water). In these electrolytic cells, hydrogen is produced at the cathode and oxygen is produced at the anode. The anodes of the cells are usually composed of virgin (untreated) nickel. It is preferred that the anodes contain pores or openings (e.g., nickel screen).
SUMMARY OF THE INVENTION
The present invention includes the production of activated nickel screens with even greater activity than those produced by the aforementioned Classical Pack Cementation process. Further, the present invention includes a unique coating procedure which eliminates all of the disadvantages inherent in the Classical Pack Cementation process.
In the process of the present invention, the nickel screens are coated in a simple dipping procedure with a slurry of aluminum powder dispersed in a binder/organic solvent system or binder/water system. The coating must completely cover the surfaces of the wires that form the screen. After an initial drying step to remove the organic solvent or the water, the coating weight on the screen should not exceed about 30 mg/sqcm and should not be less than 10 mg/sqcm. The coated screen is next placed directly in a furnace under a nitrogen, hydrogen or inert atmosphere at a temperature of from about 1450-1750° F. for a time of from about one to fifteen minutes. Coatings exceeding about 30 mg/sqcm will cause embrittlement of the wire during the heating operation. Coatings that are less than about 10 mg/sqcm will give an incomplete coating of the wires in the screen. During the heating step, aluminum is diffused into the surface of the nickel wires that form the screen where the aluminum reacts with the nickel to form nickel aluminides. By the end of the heating step, a coating has formed on the nickel wires. The portion of the coating that is closest to the external environment is predominantly NiAl
3
and aluminum, whereas the portion of the coating that is closest to the nickel wire is predominantly Ni
2
Al
3
and nickel. Subsequent leaching of the aluminum from this coating in a water solution containing 20% sodium or potassium hydroxide at 180-200° F. provides a coating with greater activity than the coating that is formed in the Classical Pack Cementation process which does not have the same structure as the coating of the present invention. In addition to its greater activity, the process of the present invention offers substantial cost savings in labor and the elimination of the release of obnoxious dusts and toxic gases during the coating and heating steps. In addition, as is shown in
FIG. 1
, there is a marked improvement in the performance of the electrolytic cells that used the activated nickel screens produced by the process of the present invention compared to the activated nickel screens produced by the Classical Pack Cementation process. This improvement in properties is believed to be a result of the differences in structure and composition between the coating of the present invention (i.e., the coating formed on the nickel screens) and the coating formed by the Classical Pack Cementation process. Specifically, the coating of the present invention (i.e., when viewed at 800× magnification) appears to have two parts or sections, see
FIGS. 3 and 5
. The outer part or section has a serrated appearance with the points of the toothlike projections facing outward (i.e., towards the external environment). The nickel to aluminum ratio (by weight) in this outer part or section of the coating is at least 20 to 1. The inner part or section, which is contiguous with the nickel wire of the screen, has the appearance of a substantially solid or uniform layer that is interlaced with fissures or cracks. The nickel to aluminum ratio (by weight) in this inner part or section of the coating is at least 4 to 1. In contrast,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Activated nickel screens and foils does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Activated nickel screens and foils, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Activated nickel screens and foils will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2997645

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.