Acrylic ester compound usage thereof

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S286000, C549S039000

Reexamination Certificate

active

06794471

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an acrylic ester compound, a manufacturing method thereof and a sulfur-containing compound used as a synthetic intermediate thereof. Furthermore, the present invention relates to a polymerizable composition containing the acrylic ester compound, a cured article obtained by polymerizing the polymerizable composition and an optical component.
An acrylic ester compound of the present invention is a new compound that has a specific dithiolane ring system in the molecule and is useful as a monomer for photo-setting polymerizable compositions. Optical components that are obtained by curing the polymerizable composition have good optical property, thermal property, mechanical property, and outstanding productivity, and also have a high refractive index. It is also useful for various plastic lenses represented by a spectacles lens for correction, a base plate material for an optical information recording medium, a plastic base plate material for liquid crystal cells, an antireflection coating, a transparent coating material such as optical fiber coating material etc., an LED sealer and a dental material, etc.
2. Description of the Related Art
Since inorganic glass is excellent in transparency and in many physical properties and has a small optical anisotropy, it is widely used in the field of transparent optical materials. However, because it has such several problems that it is heavy, is easily damaged and is low in productivity, development of a resin for optical components (an organic optical material) that replaces inorganic glass is performed much in recent years.
Transparency is a fundamentally important characteristic as a resin for optical components. At present as industrial resins for optical components with sufficient transparency, poly methylmethacrylate (PMMA), bisphenol A polycarbonate (BPA-PC), polystyrene (PS), methylmethacrylate-styrene copolymer (MS), styrene-acrylonitrile copolymer (SAN), poly(4-methylpentene-1) (TPX), polycycloolefin (COP), poly(diethyleneglycol bisallyl carbonate) (EGAC), polythiourethane (PTU), etc. are known.
PMMA is excellent in transparency and weather resistance, and also in moldability. However, a refractive index (nd) is as small as 1.49, and there is a disadvantage of a high water absorbing property.
BPA-PC is excellent in transparency, heat resistance, impact resistance, and has a high refractive index, but a chromatic aberration is large and so a use field is limited.
Although excelled in moldability, transparency, a low water absorbing property, and high refractive index, PS and MS are inferior to impact resistance, weather resistance, and heat resistance, and therefore are hardly put in practical use as a resin for optical components.
The refractive index of SAN is comparatively high and mechanical property also has a good balance, but it has difficulty in heat resistance a little (heat deformation temperature: 80 to 90° C.), and is hardly used as a resin for optical components.
Although TPX and COP are excellent in transparency, low water absorbing property and heat resistance, they have a problem that impact resistance, gas barrier property, and dye ability are inferior, with a low refractive index (nd=1.47 to 1.53).
EGAC is a thermosetting resin that has diethyleneglycol bisallylcarbonate as a monomer, and is most used for a general-purpose spectacles lens. Although it is excellent in transparency and heat resistance, and a chromatic aberration is very small, it has a disadvantage of inferior impact resistance and a low refractive index (nd=1.50).
PTU is a thermosetting resin obtained by a reaction of diisocyanate compounds and polythiol compounds, and are most used for the super-high refractive index spectacles lens. Although it is a very excellent material because of especially superior transparency, impact resistance, high refractive index and small chromatic aberration, it has an only disadvantage that thermal polymerizing molding time is long (one to three days), and therefore has a problem in respect of productivity.
Several methods are proposed in order to raise the above described productivity and to perform polymerization and curing in a short time; a method of obtaining an optical lens by photo polymerization using an acrylic ester compound containing bromine atom or sulfur atom as a polymerizable compound (for example, Japanese Patent Laid-Open No. 63-248811, Japanese Patent Laid-Open No. 3-217412, etc.), a method of obtaining an optical lens using an (meth)acrylic ester compound which has a sulfur-containing aliphatic ring system (for example, Japanese Patent Laid-Open No. 3-215081 etc.).
However, according to these methods, the resin obtained was not accepted to be sufficient when used as optical materials. That is, it has such problems that, for example, working efficiency is decreased in the case of operation of being filtered or poured into a mold because of high viscosity of a polymerizable compound (monomer) and low fluidity, that although a polymerization can be performed in a short time a refractive index or Abbe number is not sufficiently high, that a lens with a high refractive index is brittle and fragile when used as a spectacles lens and that it has a high density. Therefore, development of materials has been strongly desired which may overcome these problems.
As mentioned above, although the conventional resins for optical components have outstanding characteristics, they have respective disadvantages to be overcome at present. Under such a circumstance, development of a resin for optical components is eagerly required that has a high refractive index, excellent workability and productivity, and also has an excellent transparency, thermal characteristics and mechanical properties.
SUMMARY OF THE INVENTION
An object of the present invention is to solve the disadvantages of the above-described conventional resins for optical components, and to provide a resin for optical components with a high refractive index, excellent workability and productivity, and at the same time with excellent transparency, thermal characteristics and mechanical properties.
The inventors reached the present invention as a result of having examined zealously in order to solve the above-described problems. That is, the present invention relates to an acrylic ester compound represented by the general formula (1):
wherein, R
1
and R
2
represent independently a hydrogen atom, an alkyl group which may have a substituent, an aromatic alkyl group which may have a substituent or an aromatic residue which may have a substituent, respectively, R
3
represents a hydrogen atom or an alkyl group, A represents a divalent organic group and X represents a sulfur atom or an oxygen atom, provided that when X is an oxygen atom, R
1
represents an aromatic residue which may have a substituent.
Besides, the present invention relates to a polymerizable composition containing the acrylic ester compound represented by the above-described general formula (1), to a cured article obtained by polymerizing the polymerizable composition and further to optical components that comprise the cured article.
And also, the present invention relates to a method of manufacturing the acrylic ester compound represented by the above-described general formula (1), wherein a sulfur-containing compound represented by a following general formula (2) is esterified to form an acrylic ester. The present invention relates especially to the above described method characterized in that the above described compound represented by the general formula (2) is esterified to form an acrylic ester by dehydrohalogenation after the compound is reacted with halopropionic acids or halides thereof to form a halopropionic acid compound.
Furthermore, the present invention relates to a sulfur-containing compound represented by the general formula (2) useful as a raw material of the acrylic ester compound:
wherein R
1
and R
2
represent independently a hydrogen atom, an alkyl group which may have

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Acrylic ester compound usage thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Acrylic ester compound usage thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Acrylic ester compound usage thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3198883

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.