Acoustic wave device and process for forming the same

Electrical generator or motor structure – Non-dynamoelectric – Piezoelectric elements and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06555946

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to microelectronic structures and devices and to a method for their fabrication, and more specifically to acoustic wave devices and to the fabrication and use of acoustic wave devices, and to monolithic integrated circuits that include acoustic wave devices.
BACKGROUND OF THE INVENTION
Acoustic wave devices have several applications in the microelectronics industry. For example, acoustic wave devices can be used to perform active or passive signal processing functions suitable for delay lines, attenuators, phase shifters, filters, amplifiers, oscillators, mixers, limiters, and the like. Such acoustic wave devices are often integrated with other microelectronic components such as integrated circuits and RF generators to form assemblies for telecommunication, digital processing, and other applications.
Acoustic wave devices, such as surface acoustic wave and bulk acoustic wave devices, include a transducer coupled to piezoelectric material that converts an electronic signal received from the transducer to an acoustic wave. The acoustic wave devices are often fabricated by forming the transducer on bulk piezoelectric material or on a thin-film of piezoelectric material formed over a substrate such as a sapphire. Attempts have also been made to grow thin-film piezoelectric material over a semiconductor substrate. Formation of such films on semiconductor substrates is desirable because it allows for integration of the acoustic wave devices with other microelectronic devices on a single substrate. However, thin films of piezoelectric material formed on the semiconductor substrate are often of lesser quality than the bulk material because lattice mismatches between the host crystal and the grown crystal cause the grown thin film of piezoelectric material to be of low crystalline quality.
Generally, the desirable characteristics of acoustic wave devices increase as the crystallinity of the piezoelectric film increases. For example, the electromechanical coupling coefficient and the piezoelectric coefficient of a monocrystalline piezoelectric material is typically higher than the coefficient of the same material in polycrystalline or amorphous form. Accordingly, methods for forming monocrystalline piezoelectric films are desirable.
If a large area thin film of high quality monocrystalline piezoelectric material was available at low cost, a variety of semiconductor devices could advantageously be fabricated using that film at a low cost compared to the cost of fabricating such devices on a bulk wafer of the piezoelectric material or in an epitaxial film of such material on a sapphire substrate. In addition, if a thin film of high quality monocrystalline piezoelectric material could be realized on a bulk wafer such as a silicon wafer, an integrated device structure could be achieved that took advantage of the best properties of both the silicon and the piezoelectric material.
Accordingly, a need exists for a microelectronic structure that provides a high quality monocrystalline piezoelectric film over another monocrystalline material such as a semiconductor wafer and for a process for making such a structure.


REFERENCES:
patent: 3670213 (1972-06-01), Nakawaga et al.
patent: 3766370 (1973-10-01), Walther
patent: 3802967 (1974-04-01), Ladany et al.
patent: 3935031 (1976-01-01), Adler
patent: 4006989 (1977-02-01), Andringa
patent: 4084130 (1978-04-01), Holton
patent: 4174422 (1979-11-01), Matthews et al.
patent: 4242595 (1980-12-01), Lehovec
patent: 4284329 (1981-08-01), Smith et al.
patent: 4289920 (1981-09-01), Hovel
patent: 4392297 (1983-07-01), Little
patent: 4398342 (1983-08-01), Pitt et al.
patent: 4404265 (1983-09-01), Manasevit
patent: 4424589 (1984-01-01), Thomas et al.
patent: 4439014 (1984-03-01), Stacy et al.
patent: 4442590 (1984-04-01), Stockton et al.
patent: 4452720 (1984-06-01), Harada et al.
patent: 4459325 (1984-07-01), Nozawa et al.
patent: 4482422 (1984-11-01), McGinn et al.
patent: 4482906 (1984-11-01), Hovel et al.
patent: 4484332 (1984-11-01), Hawrylo
patent: 4523211 (1985-06-01), Morimoto et al.
patent: 4629821 (1986-12-01), Bronstein-Bonte et al.
patent: 4661176 (1987-04-01), Manasevit
patent: 4667088 (1987-05-01), Kramer
patent: 4681982 (1987-07-01), Yoshida
patent: 4748485 (1988-05-01), Vasudev
patent: 4756007 (1988-07-01), Qureshi et al.
patent: 4772929 (1988-09-01), Manchester et al.
patent: 4773063 (1988-09-01), Hunsperger et al.
patent: 4774205 (1988-09-01), Choi et al.
patent: 4777613 (1988-10-01), Shahan et al.
patent: 4793872 (1988-12-01), Meunier et al.
patent: 4802182 (1989-01-01), Thornton et al.
patent: 4815084 (1989-03-01), Scifres et al.
patent: 4841775 (1989-06-01), Ikeda et al.
patent: 4845044 (1989-07-01), Ariyoshi et al.
patent: 4846926 (1989-07-01), Kay et al.
patent: 4855249 (1989-08-01), Akasaki et al.
patent: 4868376 (1989-09-01), Lessin et al.
patent: 4876208 (1989-10-01), Gustafson et al.
patent: 4876219 (1989-10-01), Eshita et al.
patent: 4882300 (1989-11-01), Inoue et al.
patent: 4885376 (1989-12-01), Verkade
patent: 4888202 (1989-12-01), Murakami et al.
patent: 4889402 (1989-12-01), Reinhart
patent: 4891091 (1990-01-01), Shastry
patent: 4896194 (1990-01-01), Suzuki
patent: 4901133 (1990-02-01), Curran et al.
patent: 4912087 (1990-03-01), Aslam et al.
patent: 4928154 (1990-05-01), Umeno et al.
patent: 4963508 (1990-10-01), Umeno et al.
patent: 4963949 (1990-10-01), Wanlass et al.
patent: 4965649 (1990-10-01), Zanio et al.
patent: 4984043 (1991-01-01), Vinal
patent: 4999842 (1991-03-01), Huang et al.
patent: 5028976 (1991-07-01), Ozaki et al.
patent: 5051790 (1991-09-01), Hammer
patent: 5053835 (1991-10-01), Horikawa et al.
patent: 5055445 (1991-10-01), Belt et al.
patent: 5060031 (1991-10-01), Abrokwah et al.
patent: 5063081 (1991-11-01), Cozzette et al.
patent: 5063166 (1991-11-01), Mooney et al.
patent: 5067809 (1991-11-01), Tsubota
patent: 5073981 (1991-12-01), Giles et al.
patent: 5081062 (1992-01-01), Vasudev et al.
patent: 5081519 (1992-01-01), Nishimura et al.
patent: 5116461 (1992-05-01), Lebby et al.
patent: 5127067 (1992-06-01), Delcoco et al.
patent: 5132648 (1992-07-01), Trinh et al.
patent: 5140651 (1992-08-01), Soref et al.
patent: 5141894 (1992-08-01), Bisaro et al.
patent: 5143854 (1992-09-01), Pirrung et al.
patent: 5144409 (1992-09-01), Ma
patent: 5155658 (1992-10-01), Inam et al.
patent: 5159413 (1992-10-01), Calviello et al.
patent: 5173474 (1992-12-01), Connell et al.
patent: 5185589 (1993-02-01), Krishnaswamy et al.
patent: 5191625 (1993-03-01), Gustavsson
patent: 5194397 (1993-03-01), Cook et al.
patent: 5198269 (1993-03-01), Swartz et al.
patent: 5208182 (1993-05-01), Narayan et al.
patent: 5216729 (1993-06-01), Berger et al.
patent: 5221367 (1993-06-01), Chisholm et al.
patent: 5225031 (1993-07-01), McKee et al.
patent: 5227196 (1993-07-01), Itoh
patent: 5248564 (1993-09-01), Ramesh
patent: 5260394 (1993-11-01), Tazaki et al.
patent: 5266355 (1993-11-01), Wernberg et al.
patent: 5270298 (1993-12-01), Ramesh
patent: 5280013 (1994-01-01), Newman et al.
patent: 5281834 (1994-01-01), Cambou et al.
patent: 5286985 (1994-02-01), Taddiken
patent: 5293050 (1994-03-01), Chapple-Sokol et al.
patent: 5306649 (1994-04-01), Hebert
patent: 5310707 (1994-05-01), Oishi et al.
patent: 5312765 (1994-05-01), Kanber
patent: 5314547 (1994-05-01), Heremans et al.
patent: 5326721 (1994-07-01), Summerfelt
patent: 5352926 (1994-10-01), Andrews
patent: 5356509 (1994-10-01), Terranova et al.
patent: 5356831 (1994-10-01), Calviello et al.
patent: 5357122 (1994-10-01), Okubora et al.
patent: 5358925 (1994-10-01), Connell et al.
patent: 5371734 (1994-12-01), Fischer
patent: 5372992 (1994-12-01), Itozaki et al.
patent: 5391515 (1995-02-01), Kao et al.
patent: 5393352 (1995-02-01), Summerfelt
patent: 5394489 (1995-02-01), Koch
patent: 5404581 (1995-04-01), Honjo
patent: 5405802 (1995-04-01), Yamagata et al.
patent: 5406202 (1995-04-01), Mehrgardt et al.
patent: 5418216 (1995-05-01), Fork
patent: 5418389 (1995-05-01), Watanabe
patent: 5436759 (1995-07-01), Dijaii et al.
patent: 5441577 (1

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Acoustic wave device and process for forming the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Acoustic wave device and process for forming the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Acoustic wave device and process for forming the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3040287

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.