Measuring and testing – Volume or rate of flow – By measuring vibrations or acoustic energy
Reexamination Certificate
2003-05-14
2004-12-14
Raevis, Robert (Department: 2856)
Measuring and testing
Volume or rate of flow
By measuring vibrations or acoustic energy
Reexamination Certificate
active
06829947
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to in situ measurement of downhole fluid properties. More particularly, the present invention relates to characterization of fluid flow using Doppler shift techniques.
2. Description of Related Art
Conventional drilling techniques often employ drilling fluid (termed “mud”) that is circulated downhole for various reasons such as carrying earth cuttings out of the wellbore, cooling the drill bit, and also to control pressure in the well. The mud is pumped downhole through the drillstring, where it exits at the bottom of the drill bit and is forced to the surface in the annular space between the drillstring and the wellbore (hereinafter “annulus”). The hydrostatic pressure exerted by the mud column is the primary method of controlling the pressure in the formation. Loss of pressure and circulation problems may occur due to the mud being lost to the formation rather than circulating back to the surface. Although drilling can continue under these adverse conditions, it is important that lost circulation be detected as early as possible for safety and well control reasons.
First, is that drilling fluid is expensive (e.g. $50-$300 per barrel), and pumping thousands of barrels into the formation drastically increases drilling costs and may cause formation damage. Second, if the circulation downhole is lost, the cuttings are not removed from the wellbore, and surface interpretation of changes in the rock formation cannot be detected. Also if downhole circulation is lost and cuttings are not removed from the hole, the cuttings may “settle” in the wellbore, thereby “sticking the drillstring” in the hole. Third, when the formation pressure exceeds the hydrostatic pressure exerted by the mud column, a “well kick” may occur where formation fluid unexpectedly enters the well. Uncontrolled fluid entry from the formation can lead to a dangerous condition known as a “well blowout.” Thus, a method and apparatus for detecting and monitoring fluid flow downhole at any point along the drillstring would be very desirable.
Presently, technologies such as surface monitoring of the level of mud in the mud pit, or measuring the mud inlets and return lines are employed. Loeppke et al., describes a rolling counterbalanced float flowmeter to be used in the return lines in “Development and Evaluation of a Meter for Measuring Return Line Fluid Flow Rates During Drilling,” Report SAND91-2607, Sandia National Laboratories, Albuquerque, N. Mex. (June, 1992). U.S. Pat. No. 6,257,354 issued on Jul. 10, 2001 to Schrader et al., details a flow velocity sensor for mud return line measurement. However, these surface measuring technologies fail to provide timely response to a well kick deep in the well because of the amount of travel time it takes for the pressure transients in the mud to reach the surface.
U.S. Pat. No. 4,527,425 issued on Jul. 9, 1985 to Stockton (hereinafter '425) discloses a down-hole mud flow rate detector consisting of an acoustic transmit-receive pair positioned on the outer wall of the drillstring to measure return mud flow rate in the annulus and another transmit receive pair on the inner wall of a drill string to measure incoming mud flow rate. Differences in the acoustic transit time between up-stream and down-stream directions along the incoming mud flow and return mud flow are measured and used to determine the averaged flow velocities inside the drill pipe and in the annulus. However, this “transmit-time” method may be subject to several possible problems. First, the pulse wave from the transmitter is non-directional to the receiver and thus may be subject to beam diffraction and acoustic attenuation in the fluids along the path lengths. Second, the received waveform likely has a formation echo train which may consist of fast compression wave, slow compression wave, shear wave, or Stoneley wave that may interfere or overlap with the fluid echo and can make accurate determination of timing of the fluid echo very difficult. Third, invariably there are variations in the speeds of sound in the formations and/or the mud on both the incoming and return paths due to different pressures, temperatures, and unexpected fluid composition due to a well kick. This local variation in the speed of sound may exacerbate the aforementioned problems, thereby making accurate determination of the transmit time difference due to the annular flow even more difficult. Lastly, the transit time method taught in '425 only provides averaged velocity and not the full point-velocity profile across the annular gap.
In summary, conventional techniques do not provide in-situ measurements of the velocity profile of drilling mud within the wellbore or the direction of flow (i.e., target moving towards or receding from the transducers in the axial, radial, and tangential directions in the annulus).
SUMMARY OF THE INVENTION
The above-described problems are in large part addressed by an apparatus and system for in situ measurement of downhole fluid flow using Doppler techniques. A baseline speed of sound is first established close to the desired measurement point. Because the speed of sound can vary depending on pressure, temperature, and fluid composition, measuring the speed of sound close to the desired point may advantageously provide greatly enhanced accuracy. This speed of sound measurement is then used in Doppler calculations for determining flow velocities based on the Doppler shift induced by the fluid flow. A heterodyne receiver arrangement is preferably used for processing so that the flow direction can be determined and the detection sensitivity for “slow flow” velocities can be enhanced. This allows for more accurate estimation of flow velocities, which may be in the axial, radial, and/or tangential directions in the annulus. Accordingly, well kicks may be spotted and dealt with due to real time measurements. Porous formations may be identified by flow of the mud into the formation, and formation fractures (and orientations) may similarly be identified by fluid flow patterns. In addition, current theoretical models of rheological properties may be verified and expounded upon using in situ downhole measurement techniques. Furthermore, the problem of sticking the drillbit in the well is also addressed in that the velocity measurements can be used to assure adequate removal of cuttings from the wellbore, and corrective action can be taken if necessary to prevent the hole from being lost.
In an alternative embodiment, fractures in the formation may be detected. By monitoring the mud flow into a formation from the annulus at a fracture point, fracture orientation may be determined, including a three dimensional stress state characterization of the reservoir.
In yet another embodiment, baseline speeds of sound may be of made of the mud on the interior of the drillstring and the mud in the annulus can be measured. If there is a large difference in the two measurements, then this may indicate an influx in gas or fluid from the formation, which may further indicate a reservoir has been encountered.
In yet another embodiment, the disclosed sensors may be integrated along with repeater circuitry into a single package that is implemented at various points along the drillstring.
REFERENCES:
patent: 3901078 (1975-08-01), McShane
patent: 4527425 (1985-07-01), Stockton
patent: 4545244 (1985-10-01), Yasuda et al.
patent: 4754641 (1988-07-01), Orban et al.
patent: 4979112 (1990-12-01), Ketcham
patent: 5353873 (1994-10-01), Cooke, Jr.
patent: 5700952 (1997-12-01), Andersen
patent: 5831156 (1998-11-01), Mullins
patent: 6067861 (2000-05-01), Shekarriz et al.
patent: 6092416 (2000-07-01), Halford et al.
patent: 6257354 (2001-07-01), Schrader et al.
patent: 6296385 (2001-10-01), Balasubramaniam et al.
patent: 6581454 (2003-06-01), Smith
patent: PCT/US03/15232 (2003-09-01), None
Arrian et al., ABBAS, “MWD Ultrasonic Caliper Advanced Detection Techniques
Beique Jean M.
Birchak James R.
Han Wei
Hemphill Alan T.
Rodney Paul F.
Conley & Rose, P.C.
Halliburton Energy Service,s Inc.
Raevis Robert
LandOfFree
Acoustic Doppler downhole fluid flow measurement does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Acoustic Doppler downhole fluid flow measurement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Acoustic Doppler downhole fluid flow measurement will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3299860