Incremental printing of symbolic information – Ink jet – Controller
Reexamination Certificate
1999-04-09
2001-07-17
Barlow, Jr., John E. (Department: 2853)
Incremental printing of symbolic information
Ink jet
Controller
C347S023000, C347S014000
Reexamination Certificate
active
06260941
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to inkjet printing mechanisms, and more particularly to a system for monitoring a pressure wave developed in the surrounding ambient environment during the process of inkjet droplet formation. The system uses the pressure wave information to determine current levels of printhead performance, and if required, the system then adjusts the print routine, services the printhead, or alerts an operator, for instance, that an inkjet cartridge is nearly empty.
BACKGROUND OF THE INVENTION
Inkjet printing mechanisms use cartridges, often called “pens,” which shoot drops of liquid colorant, referred to generally herein as “ink,” onto a page. Each pen has a printhead formed with very small, pin-hole-sized nozzles through which the ink drops are fired. To print an image, the printhead is propelled back and forth across the page, shooting drops of ink in a desired pattern as it moves. The particular ink ejection mechanism within the printhead may take on a variety of different forms known to those skilled in the art, such as those using piezo-electric or thermal printhead technology. For instance, two earlier thermal ink ejection mechanisms are shown in U.S. Pat. Nos. 5,278,584 and 4,683,481, both assigned to the present assignee, Hewlett-Packard Company. In a thermal system, a barrier layer containing ink channels and vaporization or firing chambers is located between a nozzle orifice plate and a substrate layer. This substrate layer typically contains linear arrays of heater elements, such as resistors, which are energized to heat ink within the vaporization chambers. Upon heating, an ink droplet is ejected from a nozzle associated with the energized resistor. By selectively energizing the resistors as the printhead moves across the page, the ink is expelled in a pattern on the print media to form a desired image (e.g., picture, chart or text).
To clean and protect the printhead, typically a “service station” mechanism is mounted within the printer chassis so the printhead can be moved over the station for servicing and maintenance. For storage, or during non-printing periods, the service stations usually include a capping system which hermetically seals the printhead nozzles from contaminants and drying. Some caps are also designed to facilitate priming, such as by being connected to a pumping unit that draws a vacuum on the printhead. During operation, clogs in the printhead are periodically cleared by firing a number of drops of ink through each of the nozzles in a process known as “spitting,” with this non-image producing waste ink being collected in a “spittoon” reservoir portion of the service station. After spitting, uncapping, or occasionally during printing, most service stations have an elastomeric wiper that wipes the printhead surface to remove ink residue, as well as any paper dust or other debris that has collected on the printhead.
To improve the clarity and contrast of the printed image, recent research has focused on improving the ink itself. To provide faster drying, more waterfast printing with darker blacks and more vivid colors, pigment based inks have been developed. These pigment based inks have a higher solid content than the earlier dye based inks, which results in a higher optical density for the new inks. Both types of ink dry quickly, which allows inkjet printing mechanisms to use plain paper. Unfortunately, the combination of small nozzles and quick drying ink leaves the printheads susceptible to clogging, not only from dried ink and minute dust particles or paper fibers, but also from the solids within the new inks themselves. Partially or completely blocked nozzles can lead to either missing or misdirected drops on the print media, either of which degrades the print quality. Besides merely forcing clogs out of the nozzles, spitting also heats the ink near the nozzles, which decreases the ink viscosity and assists in dissolving ink clogs. Spitting to clear the nozzles becomes even more important when using pigment based inks, because the higher solids content contributes to the clogging problem more than the earlier dye based inks.
The pen body may serve as an ink containment reservoir that protects the ink from evaporation and holds the ink so it does not leak or drool from the nozzles, Ink leakage is prevented using a force known as “backpressure,” which is provided by the ink containment system. Desired backpressure levels may be obtained using various types of pen body designs, such as resilient bladder designs, spring-bag designs, and foam-based designs.
To maintain reliability of the inkjet printing mechanism during operation, it would be helpful to have advanced warning for an operator as to when the ink level in a cartridge is getting low. This would allow an operator to procure a fresh inkjet cartridge before the one in use is completely empty. If the cartridge is refillable, an early warning would allow an operator to replenish the ink supply before the pen is dry-fired. Dry-firing an inkjet cartridge when empty may cause permanent damage to the printhead by overheating the resistive heater elements, causing the resistors to burnout.
A variety of solutions have been proposed for monitoring the level of ink within inkjet cartridges, with many incorporating measuring devices inside the cartridge. For example, several mechanical devices have been proposed to determine when the ink supply falls below a predetermined level. One system uses a ball check valve within an ink bag to interrupt ink flow when the pen is nearly empty. Unfortunately, this system has no early warning capability and it may abruptly interrupt a printing job when a certain level of ink is reached.
Other earlier ink level monitoring systems kept a running count of the number of drops fired, which worked well until cartridges were exchanged. Unfortunately, these drop counting systems had no way of determining whether a new or a partially used cartridge was installed, so they failed to detect upcoming empty conditions for the partially used cartridges. Several more sophisticated detection systems have been devised, based upon measuring printhead temperature changes after spitting specific amounts of ink into the spittoon. These temperature monitoring systems were slow to use, and they wasted ink that could otherwise have been used for printing. Other systems have been proposed using specially designed nozzles which are more sensitive to changes in the ink reservoir backpressure than the remaining nozzles, with these backpressure changes indicating ink depletion.
In operating an inkjet printing mechanism, it would be helpful to provide feedback to a print controller, such as a printer driver residing in an on-board microprocessor and/or in the host computer, as to whether or not the printhead nozzles are firing as instructed. This information would be useful to determine whether a nozzle had become clogged and required purging or spitting to clear the blockage. This information would streamline the spitting process and conserve ink because only the clogged nozzle(s) would be spit to clear the blockage. Moreover, if damaged nozzles or heating elements could be detected, then other nozzles may be substituted in the firing scheme to compensate for the damaged nozzles. Feedback as to nozzle firing could also be used to test the electro-mechanical interconnect between a replaceable inkjet cartridge and the printing mechanism. Over time, this interconnect may be contaminated with ink, interrupting the electrical connections. When this happens, it would be desirable to notify the user to clean the interconnect.
As a manufacturing quality control check, it would also be desirable to monitor nozzle performance, for instance, to verify correct nozzle-to-nozzle alignment. It would also be helpful to check for any nozzle telecentricity, that is, any lack of perpendicularly of the orifice hole through the nozzle plate relative to the plate surface. Another important feature to monitor would be nozzle directionality, that is whether a nozz
Axten Bruce A.
Benjamin Trudy L.
Chen Iue-Shuenn
Dangelo Michael T.
Elgee Steven B.
Barlow Jr. John E.
Hewlett--Packard Company
Martin Flory L.
Stewart Jr. Charles W.
LandOfFree
Acoustic and ultrasonic monitoring of inkjet droplets does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Acoustic and ultrasonic monitoring of inkjet droplets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Acoustic and ultrasonic monitoring of inkjet droplets will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2477389