Acidic superabsorbent polysaccharides

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S387000, C526S903000, C527S300000, C528S421000, C528S486000, C528S491000, C528S503000

Reexamination Certificate

active

06765042

ABSTRACT:

The present invention relates to a superabsorbent material which has enhanced odour control and prevents bacterial growth, based on polysaccharides, and to a method of producing such material.
Superabsorbent materials of various types are known in the art. Examples are crosslinked polyacrylates and polysaccharides grafted with polyacrylates. A problem related to the use of superabsorbent materials is the odour caused by urine components which cause superabsorbent materials to become objectionable long before their maximum absorbing capacity has been used. Furthermore, the known absorbent materials are normally based on non-renewable and/or non-biodegradable raw materials. Consequently, there is a need for superabsorbent materials, which have odour control and reduced bacterial growth when contacted with body fluids, and which are biodegradable.
WO 98/27117 discloses a superabsorbent polysaccharide derivative obtained by oxidation and crosslinking of a polysaccharide such as starch, in which at least 0.1 carbinol group per monosaccharide unit of the polysaccharide derivative has been oxidised to a carboxyl group, the total number of carboxyl groups per monosaccharide unit being 0.2-3.0, and the derivative results from reaction with at least 0.001 equivalent of crosslinking agent per monosaccharide unit. The derivatives are not devised for odour control. U.S. Pat. No. 5,247,072 describes superabsorbent carboxyalkyl polysaccharides, especially carboxymethyl cellulose, without odour control, obtained by crosslinking as a result of heat treatment. EP-A-202127 discloses superabsorbent articles for reducing diaper rash, which contain acid in distinct zones to control the skin pH between 3.0 and 5.5.
It has been found that a superabsorbent polymer with improved odour control can be produced by a process comprising the steps of:
(a) crosslinking at least one polysaccharide containing acidic groups with a crosslinking agent to produce a gel;
(b) ensuring that pH of the polysaccharide is between 3.5 and 5.5 and, if necessary, adjusting the pH to between 3.5 and 5.5, especially to between 3.9 and 4.9;
(c) comminuting the acidified polysaccharide gel; and
(d) drying the comminuted polysaccharide at elevated temperature.
The term “polysaccharide containing acidic groups” is understood to comprise polysaccharides having a pK ot less than 5, down to about 1.5. Such polysaccharides may contain carboxylic groups, sulphonic groups (—(O)—SO
2
—OH), phosphonic groups (—(O)—PO(OH)
2
), ammonium groups (—NR
2
H
+
, wherein R is alkyl or hydrogen) and combinations thereof. The carboxylic groups may be present as a result of carboxyalkylation, in particular carboxymethylation, or as a result of reaction with an anhydride such as maleic or succinic anhydride or as a result of oxidation, e.g. of a hydroxymethyl group (—CH
2
OH, usually at C6 of a monosaccharide unit), or of a bis(hydroxymethylene) group (—CHOH—CHOH—, usually at C2-C3 of a monosaccharide unit).
The phosphonic groups may be present as phosphate groups, resulting e.g. from reaction with phosphorylating agents (see e.g. WO 97/28298), or as phosphonic or phosphinic acid groups, resulting e.g. from reaction with halomethyl phosphonic acids. The sulphonic acids may be present e.g as sulphate groups or as a result of sulphite addition to polysaccharide aldehydes (see e.g. WO 99/29354) or to maleic anhydride adducts (products with —O—CO—CH—CH(COOH)—SO
3
H groups). The ammonium groups are also acidic groups, and can result from protonation of amine groups, such as in chitosan-type polysaccharides or in aminoalkylated polysaccharides.
The polysaccharides may be &agr;-glucans like starch, amylose and amylopectin, &bgr;-glucans like cellulose and chitin and scleroglucan, galactomannans like guar gum (guaran) and locust bean gum, glucomannans including e.g. xanthan gum, fructans, (arabino)xylans, galactans including alginates and pectin and other mixed polysaccharides. Starch and cellulose are particularly preferred. Starch may be derived from any suitable source, such as corn, wheat, potato, rice and the like; it may also be a residual, crude or lower-grade starch product containing minor amounts of other biopolymers such as cellulose, pectin or protein. Cellulose may also contain minor amounts of other materials such as hemicellulose.
The polysaccharides may comprise non-ionic, non-carboxylated derivatives such as hydroxyalkyl polysaccharides, but the presence of such non-ionic derivatives does not have a particular advantage. The chain length of the polysaccharides is important although there is no critical minimum for the molecular weight. In general, polysaccharides having a molecular weight of more than 1,000 are preferred. A molecular weight above about 25,000 may have a positive effect on the properties of the oxidised product.
The acidic polysaccharide can be a carboxymethyl polysaccharide without further substitution, such as carboxymethyl cellulose, preferably having a degree of substitution of 0.3-3.0, more preferably 0.5-1.5. For such carboxymethylated polysaccharides, the process advantageously comprises the further step of contacting the crosslinked polysaccharide with an organic solvent which is at least partly miscible with water, between step (b) and step (c). The organic solvent is preferably a water-miscible alcohol such as methanol, ethanol, methoxyethanol or isopropanol, a water-miscible ether such as dioxane, tetrahydrofuran or dimethoxyethane, or a water-miscible ketone, such as acetone. Most preferred are methanol and ethanol. The amount of solvent can be e.g. 2-30 times the amount of the gelled polysaccharide. The water-miscible solvent is evaporated before or during step (d).
The carboxymethylated polysaccharide can also be a carboxymethyl polysaccharide containing further carboxyl groups produced by oxidation of saccharide carbinol groups. Such carboxyl groups may be 2- and/or 3-carboxyl groups obtained by oxidation of anhydroglycose rings of the polysaccharide using hypochlorite or periodate/chlorite, but preferably they are 6-carboxyl groups obtained by oxidation of the 6-hydroxymethyl group, e.g. with a nitroxyl compound (TEMPO) as a catalyst. In such carboxy-carboxymethyl polysaccharide, such as 6-carboxy-carboxymethyl starch or 6-carboxy-carboxymethyl-cellulose, the degree of substitution for carboxymethyl is preferably 0.2-0.8, especially 0.3-0.6, and the degree of substitution for (6-carboxyl groups is preferably 0.1-0.5, more preferably 0.15-0.4.
Suitable oxidation methods are described in WO 98/27117 and references cited therein. TEMPO oxidation may be performed with hypochlorite with or without bromide as a catalyst, or with peracid/bromide or another oxidant. Unsubstituted TEMPO or 4-hydroxy or 4-acetamido-TEMPO or mixtures thereof may be used. When oxidations resulting in salt production are used, the salts may advantageously be removed after the oxidation reaction.
Similarly, the acidic polysaccharide may contain both other acidic groups obtained by substitution, and carboxyl groups obtained by oxidation. Such other acidic groups obtained by oxidation include e.g. phosphonic groups obtained by phosphorylation of the polysaccharide, sulphonyl groups and carboxyalkylcarbonyl groups obtained by reaction with a dicarboxylic anhydride. Substitution and oxidation may be performed in either order, e.g. first phosphorylation and then oxidation, or first oxidation and then phosphorylation. Combinations of different acidic substituents e.g. carboxylalkyl groups and phosphonic groups are also suitable.
In such oxidised and subsituted (carboxyalkyl or other) polysaccharides the addition of an organic water-miscible solvent can be dispensed with, as a gel with the required structure already results from direct cross-linking.
The polysaccharide containing acidic groups can also be a carboxylated polysaccharide wherein the carboxyl groups have been introduced by oxidation of saccharide carbinol groups in a manner as described above, without carboxyalkylation. Such oxidised polysaccharides include dicarboxy polysacchari

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Acidic superabsorbent polysaccharides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Acidic superabsorbent polysaccharides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Acidic superabsorbent polysaccharides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3198692

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.