Acidic hard-surface antimicrobial cleaner

Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S181000, C510S182000, C510S243000, C510S245000, C510S253000, C510S271000, C510S362000, C510S405000, C510S426000, C510S432000

Reexamination Certificate

active

06699825

ABSTRACT:

RELATED APPLICATION(S)
Not applicable.
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable
BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to aqueous liquid cleaning and antimicrobial compositions which leave a low residue of material on the surface to be cleaned. The compositions of the present invention contain a synergistic combination of specific amounts of certain organocarboxylic acids and sparingly water-soluble monohydric aliphatic alcohol solvents, such as benzyl alcohol and certain low molecular weight glycol ethers. Anionic sulfated or sulfonated surfactants and co-solvents are also included in the preferred compositions.
2. Background Art
Eliminating pathogenic micro-organisms on various surfaces, especially hard surfaces where such organisms may stay active for relatively long periods of time, continues to be a desire of consumers. Traditionally, quaternary ammonium compounds, high levels of certain alcohols, and oxidizing agents have been used in anti-microbial household cleaning products. Disadvantages of utilizing these types of agents include their tendency to cause eye and skin irritation, unpleasant odor, high levels of volatile organic compounds (VOC's), and potential surface damage effects. Some types of hard surfaces, notably glass, glazed ceramic, and polished metal present an additional problem for cleaning and disinfecting. The visible appearance of these surfaces after cleaning is negatively affected by residues left on the surface by the cleaning composition, even after wiping by the user. Rinsing the surface with fresh water after cleaning would help remove these unsightly residues, but this step adds additional work to the cleaning process. Thus, there exists a need for cleaning and disinfecting compositions which can be used on various hard surfaces, especially glass, glazed ceramic, and polished metals, without leaving unsightly residues. Additionally, it is advantageous that such compositions are comprised largely of water, avoiding the use of large amounts of alcohols such as ethanol or isopropanol for reasons of cost, safety, and minimization of formulation VOC's.
Certain acids are known to have antimicrobial properties and are recognized as antimicrobial agents by governmental agencies such as the United States Environmental Protection Agency. For example, using the National Pesticide Information Retrieval System (Center for Environmental and Regulatory Information Systems, Purdue University, West Lafayette, Ind.), one can search a database of current US EPA disinfectant registrations. Such a search will indicate that substances such as citric acid, hydrochloric acid, lactic acid, phosphoric acid, propionic acid, and sulfuric acid are EPA recognized antimicrobial actives.
Many current anti-bacterial acid compositions in food and industrial sanitizing applications tend to utilize dilutable concentrates, some of which employ strong acids such as hydrochloric, phosphoric, organophosphonic, sulfuric, or organosulfonic acids. However, the use of cleaning compositions containing strong acids, especially phosphorous-containing acids, is undesirable for the formulation of household cleaning products for consumer use. Weak organic acids are desirable, such as lactic acid and citric acid, and are recognized by the United States Environmental Protection Agency as antimicrobial actives. Because they are weak acids, they are generally safer to use than mineral acids, both for the user and the surfaces to which they are applied. However, these acids generally do not have strong antimicrobial properties when used by themselves at low levels in aqueous solutions. Ideally, a second agent must be employed in combination with low levels of such weak acids, such that this second agent enhances the antimicrobial activity of the composition and also does not contribute to unsightly residue left on the surface after cleaning.
It is also known that certain acid-anion surfactant combinations can be used to formulate anti-microbial cleaners and surface treatments. For example, acid-anionic sanitizers have been successfully used in various industrial antimicrobial applications, such as in the food processing equipment and dairy industries. Non-volatile surfactants are used in these formulations, and therefore will remain on the surface to some extent once applied, unless rinsed away with clean water. Optimum efficacy is usually obtained at a pH of 3 or less. To avoid corrosion problems, and to minimize safety concerns, a pH range of from about 2 to 3 is preferred, which also provides some cleaning efficacy against low to moderate levels of hard-water soiling or spotting.
The prior art includes many compositions for cleaning hard surfaces, some of which include acidic antibacterial, or antimicrobial, components. Among these, U.S. Pat. No. 3,969,258, of Carandang, et al, teaches low foaming acid sanitizer compositions containing anionic surfactants which normally exhibit high-foaming characteristics. A foam suppressant combination of a C
8
to C
18
aliphatic alcohol, or a C
9
to C
12
alkyl phenol, and a polyvalent metal salt is present, and additional solubilizing glycols and alcohol may also be present. The reference, however, indicates that a pH of below 3.5 is necessary to achieve the desired result, and while weaker acids such as citric acid may be used, a stronger acid is normally used in combination therewith to achieve the pH desired.
Ramachandran, in U.S. Pat. No. 3,915,633, teaches a pre-wash combination utilizing as its primary active ingredient an organic acid capable of complexing stain-forming metallic ions in soil on a fabric. The organic complexing acid is selected from citric acid, succinic acid, tartaric acid, maleic acid, fumaric acid, and mixtures thereof, in concentrations of from 1 to 20 percent.
Baker et al, in U.S. Pat. No. 4,690,779, teach a substantially non-streaking, hard surface aqueous cleaning composition comprising from about 0.05% to 25.0% surfactant; from about 0.05% to 25.0% of an unbranched straight chain polymer of molecular weight less than 5000; from about 0.05% to 25.0% of an aqueous solvent; from about 0.05% to 25% builder; and the remainder water. Thus, the cleaner of this reference comprises a surfactant, a polymer, a solvent, and a builder, in addition to water.
A liquid hard surface cleaner having disinfectancy, comprising pine oil and organic oil soluble acids at an acid pH, is taught by Spaulding, et al, in U.S. Pat. No. 4,867,898. The reference teaches the use of organic oil soluble acids such as benzene carboxylic acids or hydroxy carboxylic acids, in combination with the pine oil and optional detergent agents.
Brown-Skrobot, et al, in U.S. Pat. No. 4,975,217, teach germicidal compositions for direct application to human skin, including an organic acid and a surfactant as active agents, and optionally also use an alcohol. The composition is intended for use in lotions and sprays, as well as in cleansers.
Eggensperger, et al, in U.S. Pat. No. 5,122,541, teach an aqueous surface disinfectant composition comprising as essential components a mixture of ethyl alcohol and isopropyl alcohol, a mixture of anionic surfactants, and a pH modifying agent to provide a pH from about 2 to 6, or from about 8 to 12.
In U.S. Pat. No. 5,436,008, Richter et al. teach that a microbial composition comprising a major portion of carrier and an effective sanitizing amount of octanoic acid or octanoic acid derivatives, and a sulfur containing compound, may be used for dairy farms, food and beverage processing plants, kitchens, food serving establishments, and for general utility in domestic households.
In addition to the above, U.S. Pat. No. 5,750,482, of Cummings, teaches a non-streaking glass cleaning composition comprising an ethylene glycol monohexyl ether, a surfactant, an organic cosolvent comprising a mixture of a low boiling organic cosolvent and a high boiling organic cosolvent, a builder, and water, said composition effective in a pH range from about 3.5 to about 11.5 as a glass cleaning compositi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Acidic hard-surface antimicrobial cleaner does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Acidic hard-surface antimicrobial cleaner, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Acidic hard-surface antimicrobial cleaner will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3217064

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.