Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Reexamination Certificate
2001-08-24
2004-04-20
Hampton-Hightower, P. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
C525S420000, C525S425000, C525S437000, C524S099000, C524S357000, C524S539000, C428S357000, C428S364000, C428S394000, C428S395000, C428S475200, C428S480000, C528S272000, C528S288000, C528S310000
Reexamination Certificate
active
06723799
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to acid-dyeable polymer compositions suitable for use in manufacturing fibers, fabrics, films and other useful articles, and to the articles and methods of making such compositions and articles. This invention also relates to processes for preparing the polymeric additive composition and using it to produce acid-dyeable polymer compositions.
BACKGROUND OF THE INVENTION
Polyesters, especially polyalkylene terephthalates, have excellent physical and chemical properties and have been widely used for resins, films and fibers. In particular, polyester fibers have a high melting point, and can attain high orientation and crystallinity. Accordingly, polyesters have excellent fiber properties such as chemical, heat and light stability, and high strength. However, polyesters, especially polyester fibers and fabrics, are difficult to dye. The molecular structure and the high levels of orientation and crystallinity that impart the desirable properties to the polyester also contribute to a resistance to coloration by dye compounds. Also contributing to the difficulty in dyeing polyester compositions is the characteristic that polyesters do not have dye sites within the polymer chain that are reactive to basic or acid dye compounds.
Nylon polymers are generally dyed more easily than polyesters because of their greater permeability and, in the case of the preferred acid dyes, because the amine end groups in nylon serve as dyesites. However, in many cases these amine-end dyesites are not present at sufficiently high concentration to give the desired depth of dyeing, particularly in fine-denier fibers. Therefore, improvements in the acid dyeability of nylon are desired.
To impart acid dyeability to polyester, it has been proposed to blend polyester with nylon 6 or nylon 6,6 to obtain the benefits of the amine-end dyesites in the resulting polyester/polyamide copolymer composition. The high concentrations of polyamide that may be required to impart dyeability in this polyester/polyamide composition can result in forming polyamide microfibrils, which decrease the physical properties of the polyester/polyamide copolymer and create difficulties in processing.
Co-polymerizing nitrogen containing compounds into polyester chains to improve acid dyeability has been disclosed in, for instance, U.S. Pat. Nos. 3,901,853, 4,001,189 and 4,001,190.
Canadian Patent No. 974,340 discloses acid-dyeable polyester compositions comprising tertiary nitrogen-containing polyamides. Preferred are copolyamides of two or more monomers inclusive of diamines, dicarboxylic acids and aminocarboxylic acids. The tertiary nitrogen component may be derived from piperazine derivatives; HOOC(—CH
2
)
n
—NR—(CH
2
)
n
—COOH, wherein R can be a group selected from the class consisting of aliphatic (branched or unbranched), cycloaliphatic, aryl or heterocyclic groups; R
1
—NH—R
2
—NR
3
—R
4
—NHR
5
, wherein R
2
and R
4
can be a group selected from aliphatic (branched or unbranched), cycloaliphatic or aryl, R
1
and R
5
can be a group selected from hydrogen, aliphatic (branched or unbranched), cycloaliphatic or aryl, and R
3
is aliphatic (branched or unbranched), cycloaliphatic, aryl or heterocyclic; and cyclic polyamines. Piperazine ring containing polyamides are preferred and all of the examples are directed to these compounds, and to their use with polyethylene terephthalate or polybutylene terephthalate. Piperazine ring containing polyamides, a cyclic compound containing two nitrogens on a single ring, is not sufficiently thermally stable for many applications.
WO 01/34693 (corresponding to co-pending U.S. patent application Ser. No. 09/708,209 filed Nov. 8, 2000, now U.S. Pat. No. 6,576,340, filed Aug. 11, 2000 (Docket No. RD-7850)), discloses an acid-dyeable polyester composition made by melt-blending a polyester with a polymeric additive containing a secondary amine salt or a secondary amine, such as made by combining bis(hexamethylene)triamine with a second monomer unit such as aterephthalate. This technology is particularly useful for dyeing fabrics lightly, but adding 3-4 mole % or more of the dye has been found to impact physical properties, particularly tenacity. Tenacity is improved by adding phosphorous acid; however, phosphorous acid leads to instability of pack pressure and may cause spin problems over the long run. In addition, it was not possible to significantly increase the amount of BHMT added using phosphorus acid without spin problems. Therefore, an additive that can provide deep dyeable polyester with acid dyes without such drawbacks is desired.
All of the aforementioned documents are incorporated herein by reference.
It is desirable to have acid-dyeable nitrogen-containing polyester and/or nylon compositions with good physical properties which may be easily processed into fibers, films or other shaped articles and acid-dyed without expensive additives, special solutions, spinning problems, and/or complicated application procedures. It is particularly desirable to be able to deep dye such compositions or shaped articles.
SUMMARY OF THE INVENTION
The invention is directed to an acid-dyeable polymer composition comprising (a) polymer and (b) polymeric additive comprising repeating units having the formula:
or salts thereof, wherein A, B and Q, which may be the same or different, are selected from aliphatic or aromatic substituents provided that at least four carbon atoms separate any two nitrogen groups, R is an aliphatic or aromatic group, a is 1 to 5, and n is 3 to about 1,000.
In one preferred embodiment, a is 1. In another preferred embodiment, a is greater than 1, preferably 2-5.
In one preferred embodiment, the polymer is polyester, preferably selected from the group consisting of polyalkylene terephthalate, polyalkylene isophthalate and polyalkylene naphthalate and copolyesters thereof and blends thereof, more preferably selected from the group consisting of polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate and copolyesters thereof and blends thereof. One preferred polymer is polytrimethylene terephthalate.
In another preferred embodiment, the polymer is nylon. Nylon is acid-dyeable and the invention makes it possible to deep-dye nylon. For instance, with this invention it is possible to prepare nylon compositions, fibers and other products which can be dyed to a deep shade. Preferred nylons include nylon 6, nylon 4,6, nylon 6,6, nylon 6,10, nylon 6,12, nylon 12,12 and copolymers and blends thereof. Most preferred are nylon 6 and nylon 6,6.
Preferably, A, B and Q are selected from alkylene substituents containing from 4 to 20 carbons and arylene substituents containing from 6 to 18 carbons. More preferably, R is C
1
-C
8
alkyl, and A and B are preferably C
4
-C
8
, alkylene and Q is preferably C
2
-C
10
alkylene.
Preferably the polymeric additive is prepared by polymerizing (i) polyamine containing tertiary amine unit(s) or salts thereof and (ii) other monomer units, and the polyamine is selected from those having the formula: H
2
N(CH
2
)
x
[NR(CH
2
)
y
]
a
NH
2
or salts thereof, wherein x and y, which may be the same or different, are 4 to 10, a is 1 to 5, and R is an alkyl group containing 1 to 8 carbons in a straight or branched chain. In one preferred embodiment, a is 1. In another preferred embodiment, a is greater than 1, preferably 2-5.
Preferred polyamines include methyl-bis(hexamethylene) triamine, methyldibutylenetriamine, and dimethyltributylenetetramine or salts thereof.
Preferably the polymeric additive is prepared by polymerizing (i) polyamine containing tertiary amine unit(s) or salts thereof and (ii) aliphatic and aromatic dicarboxylic acids or esters. Preferred aliphatic and aromatic dicarboxylic acids or esters include dimethyl adipate, adipic acid, dimethyl terephthalate, terephthalic acid, dimethyl isophthalate, isophthalic acid, dimethyl naphthalate, naphthalic acid, or mixtures thereof. More preferred are dimethyl adipate, adipic acid, dimethyl terephthalate, terephthalic acid,
Higley David P.
Sun Yanhui
E I. du Pont de Nemours and Company
Hampton-Hightower P.
Kuller Mark D.
LandOfFree
Acid-dyeable polymer compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Acid-dyeable polymer compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Acid-dyeable polymer compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3263379