Acetabular total hip component alignment system for accurate...

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S091000

Reexamination Certificate

active

06214014

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to systems which aid alignment during surgical procedures. Such systems can be used with procedures which perform surgeries on anatomical features with or without the positioning of an implant.
BACKGROUND OF THE INVENTION
Total hip replacement surgery requires accurate positioning of the acetabular and femoral components during the actual surgery. The acetabular component, sometimes referred to as the “socket” is aligned to the pelvis three dimensionally. Surgeons tend to orient the socket in terms of two dimensions. These two dimensions are termed anteversion, and inclination. Anteversion is the forward tilt of the axis of the hemispherical socket. Inclination is the upward tilt of the component.
FIG. 1
depicts the inclination angle A in a front view of the pelvis.
FIG. 2
depicts the anteversion angle B in a bottom view of the pelvis.
In anatomic terms, the anteversion is forward towards the front of the patient in the transverse plane. Inclination is in an upward direction in the coronal plane.
These two positions, anteversion and inclination can be critical to the stability of the total hip replacement. If the socket is placed either under or over certain angles, the hip will be unstable, and will dislocate. Dislocation usually requires an emergency transfer of the patient to a medical facility where anesthetics are administered and the hip manipulated back into place. Generally, the hip can be reduced or correctly positioned by closed means. However, in some cases, the patient may require an emergency operation to openly reduce or correctly position the hip joint. The degree of desired anteversion and inclination varies between surgeons, and there is no absolute value that is universally agreed upon. Clinical studies of dislocated prostheses show a significant extreme in the angular placement of the socket. In fact, the most common cause of dislocation that is due to component malposition is a malpositioned socket. Either under anteversion, retroversion (the plane of the socket is less than zero), or occasionally over anteversion can all lead to unstable replacements. If the inclination is above 60 degrees from the horizontal axis, there is a statistically increased risk of dislocation. Most surgeons report the ideal position of a socket at between 15 and 20 degrees of anteversion, and 40 to 45 degrees of inclination. When surgeons err, they prefer to place the socket with more anteversion, rather than less, and less inclination rather than more.
Anteversion is easier to estimate than inclination since there are more landmarks to reference. In the lower portion of the acetabulum, there is a ligament termed the transverse acetabular ligament. It has been described as a reference that can be used to determine anteversion. The surgeon more commonly estimates anteversion simply by referencing the coronal plane of the patient. Since the torso, shoulder, and pubis are generally visible or palpable, these landmarks can be utilized in the estimation of the coronal plane, and therefore the position of the socket in anteversion.
Inclination is much more difficult to assess than anteversion. The surgeon has few, if any, landmarks to spatially orient the pelvis in the sagittal plane. To rely on the visible bony anatomy of the acetabulum is misleading. The majority of acetabular are inclined steeper than 45 degrees. Attempting to use the rim of the acetabulum to orient inclination varies with the size of the acetabular socket. In addition, the pelvis is known to move in different directions during the operation. This makes it extremely difficult, if not impossible, to reference the pelvis during the insertion of the socket. Sophisticated electronic methods have been devised to track the position of the pelvis during surgery, but then can be expensive, invasive, and impractical for everyday use. Surgeons are left with a method of estimation of pelvis position to the horizontal plane. Manufacturers have provided guides that attempt to orient the socket to the horizontal plane. Some have even incorporated leveling devices to help orient the guide. However, all of these methods rely on the pelvis being oriented to that plane, a method that involves a crude estimation. lntraoperative radiographs have been described to confirm socket position, but have not been popular because of the impracticality of their use.
SUMMARY OF THE INVENTION
The present invention is directed to an alignment system for use in surgical procedures which may or may not include an implant. The alignment system and method in a particular embodiment depicted is used for aligning an acetabular socket for a hip replacement. It is to be understood that such an alignment system and method can be used for implanting other implants and also in situations where the natural structure such as bony structures of the patient must be aligned and contained in position with other tissues from the patient.
Accordingly, it is an object of the present invention to provide an alignment system comprising a reference adapted for positioning adjacent to an anatomical tissue and a device which can establish an angle relative to the reference.
A further object of the invention includes a surgical alignment system comprising a means for defining a reference which is adapted for positioning adjacent to an anatomical structure and means for establishing an angle relative to said means for defining a reference.
A further aspect of the present invention includes a method for establishing alignment for the implantation of a device comprising the steps of locating a landmark, using the landmark to position an alignment system, and using the alignment system to establish an alignment.
Other aspects, objects and advantages of the invention can be obtained from a review of the detailed description of the preferred embodiment, the figures, and the claims.


REFERENCES:
patent: 5007936 (1991-04-01), Woolson
patent: 5037424 (1991-08-01), Aboczsky
patent: 5141512 (1992-08-01), Farmer et al.
patent: 5413116 (1995-05-01), Radke et al.
patent: 5527317 (1996-06-01), Ashby et al.
patent: 5700268 (1997-12-01), Bertin
patent: 5832422 (1998-11-01), Wiendenhoefer
patent: 5870832 (1999-02-01), Slocum
patent: 5961555 (1999-10-01), Huebner
PCT Notification of Transmittal of the International Search Report or the Declaration for PCT/US99/10990, Int'l Filing Date May 19, 1999, mailed Oct. 26, 1999. (Now Public Document WO/9959487.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Acetabular total hip component alignment system for accurate... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Acetabular total hip component alignment system for accurate..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Acetabular total hip component alignment system for accurate... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2478396

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.