Fluid sprinkling – spraying – and diffusing – With cutoff or flow varying means operated by means...
Reexamination Certificate
2000-01-26
2002-06-11
Doerrler, William C. (Department: 3752)
Fluid sprinkling, spraying, and diffusing
With cutoff or flow varying means operated by means...
C239S069000, C239S263100, C239S263300, C239S210000, C239SDIG001
Reexamination Certificate
active
06402048
ABSTRACT:
FIELD OF THE INVENTION
The present invention is for a sprinkler system and a sprinkler head design, namely, a sprinkler system having one low pressure water feed line that serves a plurality of individually actuated and programed sprinkler heads. The individually programed and actuated sprinkler heads make it possible to deliver an accurate amount of water at a frequency desired for the specific type of plant being served by the individual sprinkler head.
BACKGROUND OF THE INVENTION
One of the major problems with horticultural sprinkler systems using the presently available components is devising a system design that provides the appropriate amount of water with the proper frequency for all of the various plants in the area to be automatically sprinkled. Some plants need deep watering while others require shallow watering; others require that the foliage not be wet during sprinkling to minimize the development of various diseases and infestations, while other plants are immune to such infestations or require wetting of the foliage during watering; some plants require watering daily or on alternate days particularly in warm or hot weather, while others are drought tolerant and need watering only once or twice a month. Then there are those plants that require protection from frost in cold weather while others do not. And how do you deal with a tropical plant that requires heavy and frequent watering that is planted in close proximity to drought tolerant plants that only require sparse watering, or different soil types which occur throughout a large planted area? These are very serious problems that may not be solvable with the present sprinkler equipment and controls that are currently available once the landscaping has been established.
Due to problems such as those recited above, in today's market one's landscaping and sprinkler system are usually designed and installed simultaneously so that all of the plants served by each circuit of the sprinkler system have similar watering requirements. Thus, sprinkler systems that are currently in use today require multiple watering circuits and various types of sprinkler heads with various coverage patterns.
It would be desirable if there was a horticultural sprinkler system that had none of the drawbacks of those presently available, and particularly a system that can just as readily be installed in an established landscaped area as together with the installation of new landscaping. Even more desirable would be a sprinkler system that easily permitted the introduction or removal of plants throughout the landscaped area and corresponding reprogramming of sprinkler heads, or even the enlarging of the landscaped area. A system that provides unrestricted creativity in the selection and placement of types and species of plants would also be very desirable. In addition it would be desirable to have a sprinkler system that requires the least number of parts, particularly different types, styles and coverage pattern sprinkler heads, preferably a single style sprinkler head. The present invention meets all of these requirements.
SUMMARY OF THE INVENTION
The present invention presents a unique irrigation sprinkler system with a unique sprinkler head design; a unique method of defining the planted area to be served by the sprinkler head; a unique method for determining when that planted area needs to be watered; a unique way of providing even coverage throughout the planted area when being watered; the ability to use one sprinkler head to individually water multiple, non-overlapping planted areas; a unique way of addressing multiple sprinkler heads in the same sprinkler system; and a unique method for remotely determining the integrity of the sprinkler system.
Each sprinkler head of the present invention irrigation sprinkler system is disposed to be coupled to the same water feeder line to deliver water to a planted area of interest. Each sprinkler head of the present invention includes an input port disposed to be coupled to the water feeder line with a control value coupled to the input port to provide controlled water flow through the control valve to the interior of the sprinkler head. In addition there is a flow rate monitoring unit adjacent the control value to monitor the water flow rate as it exits the control valve for delivery to a nozzle with a proximate end adjacent the flow rate monitoring unit to receive the water flow from the control valve and to expel the water from the distal end of the nozzle to the planted area of interest. The sprinkler head further includes a drive means affixed to the nozzle for angularly positioning the distal end of the nozzle, and an angular position monitoring unit to determine the position of the drive means. To control the operation of the various components of the sprinkler head, there is also a sprinkler head control subsystem coupled to the control valve, the flow rate monitoring unit, the drive means and the angular position monitoring unit to monitor and control the water flow rate through, and the angular position of, the nozzle to deliver water to the planted area of interest.
One embodiment of the flow rate monitoring unit could include a flexible finger having a proximate end mounted to a fixed position relative to the water flow and a distal end extending into the path of the water flow. In this embodiment, the distal end of the flexible finger is in a relaxed position when the water flow rate is zero and a displaced position when the water flow rate is non-zero, with the extent of the displaced position being directly related to the water flow rate. Additionally there is a magnet mounted at either a fixed position adjacent the distal end of the flexible finger or on the distal end of the flexible finger. Working in cooperation with the magnet, there is a flow rate magnetic field sensor at the other position adjacent the magnet to provide an electrical signal that is directly related to the strength of the magnetic field detected from the magnet. The strength of that detected magnetic field in turn is strongest when the water flow rate is zero and of decreasing strength the greater the water flow rate, i.e., the signal strength is greatest when the magnet is closest to flow rate magnetic sensor with the signal strength deceasing the further apart the magnet and the flow rate magnetic sensor are from each other.
An embodiment of the angular position monitoring unit similarly includes a magnet mounted at either a fixed position adjacent the drive means or on the drive means. The corresponding angular position magnetic field sensor is then mounted at the other location with the angular position magnetic field sensor providing the strongest electrical signal when the magnet is adjacent the angular position magnetic field sensor to define the zero degree angular position for the nozzle. The zero position is then determined before the control subsystem causes the drive means to operate between selected angular positions in the delivery of water to the planted area of interest.
The overall sprinkler system of the present invention, as stated above, provides water from a water source to the planted area of interest, with the sprinkler system including a water feeder line disposed to be coupled to the water source which could provide water from a marginal water pressure, perhaps as low as 20 psi (pounds per square inch) or normal city water system pressures in the range of 60 to 90 psi, or at even higher pressures. Coupled to that water feeder line is at least one a sprinkler head of the type discussed above, or equivalent to that sprinkler head. Additionally, each sprinkler head is individually electrically controllable during the watering cycle to continuously vary the angular position of, and the water flow rate through, the nozzle to the planted area of interest to provide even coverage of that area. The overall system also includes a power and data line coupled to each of the sprinkler heads to provide power and control data to each one from a master controller disposed to be co
Doerrler William C.
Jones Allston L.
Kim Christopher
LandOfFree
Accurate horticultural sprinkler system and sprinkler head does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Accurate horticultural sprinkler system and sprinkler head, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Accurate horticultural sprinkler system and sprinkler head will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2939969