Refrigeration – Reversible – i.e. – heat pump – With flow control or compressor details
Reexamination Certificate
2002-05-20
2003-08-19
Doerrler, William C. (Department: 3743)
Refrigeration
Reversible, i.e., heat pump
With flow control or compressor details
C062S503000, C062S512000
Reexamination Certificate
active
06606879
ABSTRACT:
TECHNICAL FIELD
The subject invention generally relates to an accumulator assembly for use in a heat pump system that is selectively operable in a heating mode and in a cooling mode. More specifically, the subject invention relates to an accumulator assembly that includes a reversing valve to accommodate the flow of refrigerant in one direction, which is associated with the heating mode of the heat pump system, and to accommodate the flow of the refrigerant in an opposite direction, which is associated with the cooling mode of the heat pump system.
BACKGROUND OF THE INVENTION
Heat pump systems are known in the art. Heat pump systems are selectively operable in a heating mode to heat a particular area, such as a room or a passenger compartment of a motor vehicle, and in a cooling mode to cool the area.
Conventional heat pump systems include a refrigerant compressor, a front end heat exchanger, a passenger compartment heat exchanger, an accumulator, and a reversing valve. As appreciated by those skilled in the art, the accumulator is typically an accumulator/dehydrator. The reversing valve directs, or controls, a flow of refrigerant throughout the heat pump system depending on whether the heat pump system is in the heating mode or in the cooling mode. More specifically, in the heating mode, the reversing valve directs the flow of the refrigerant throughout the heat pump system in a first direction, and in the cooling mode, the reversing valve directs the flow of the refrigerant throughout the heat pump system in a second direction, which is generally the opposite of the first direction of flow.
As shown in
FIG. 1
, which represents the heat pump systems of the prior art, the accumulator and the reversing valve are distinct components. That is, the reversing valve is not integral to, i.e., one component with, the accumulator. Because the accumulator and reversing valve are distinct components, i.e., because the reversing valve is not integrated into the accumulator, the heat pump systems of the prior art are unable to accommodate the flow refrigerant in both the first and second directions without the separate reversing valve.
With the separate reversing valve, the heat pump systems of the prior art are deficient for several reasons. For instance, any plumping requirements for the heat pump system are particularly complex due to the additional and separate componentry of the reversing valve. With the separate reversing valve, the heat pump systems of the prior art require additional plumbing connections and, as is known throughout the art, the more plumbing connections throughout a heat pump system, the greater the likelihood of failure throughout the system, i.e., reliability of the system is effected due to the increased plumbing connections. Furthermore, with the accumulator and the reversing valve as separate components, the overall mass of the heat pump system is increased and the overall packaging for the heat pump system is unnecessarily complex. Finally, service of the heat pump system is complex as both the accumulator and the reversing valve may require service.
Due to the inadequacies of the prior art heat pump systems, including those described above, it is desirable to provide an accumulator for use in a heat pump system that includes, i.e., integrates, a reversing valve in the accumulator such that the accumulator can accommodate the flow of the refrigerant in both the first and second directions of refrigerant flow.
SUMMARY OF THE INVENTION
An accumulator assembly for use in a heat pump system is disclosed. The heat pump system includes a refrigerant compressor, a front end heat exchanger, and a passenger compartment heat exchanger. The heat pump system is selectively operable in a heating mode and in a cooling mode. In the heating mode, refrigerant flows through the system in a first direction, and in the cooling mode, the refrigerant flows through the system in the second direction. The accumulator assembly of the subject invention accommodates the flow of the refrigerant through the system in either the first or second direction.
The accumulator assembly of the subject invention includes a body housing and a cap housing covering the body housing. The body housing includes an accumulator inlet for receiving the refrigerant from the compressor and an accumulator outlet for sending the refrigerant to the compressor. The accumulator assembly further includes a first and second refrigerant port.
The first refrigerant port is defined within one of the body and cap housings. Moreover, the first refrigerant port is in fluid communication with the front end heat exchanger. As such, the first refrigerant port receives the refrigerant from the front end heat exchanger in the heating mode and sends the refrigerant to the front end heat exchanger in the cooling mode. As with the first refrigerant port, the second refrigerant port is also defined with one of the body and cap housings. The second refrigerant port is in fluid communication with the passenger compartment heat exchanger. As such, the second refrigerant port sends the refrigerant to the passenger compartment heat exchanger in the heating mode and receives the refrigerant from the passenger compartment heat exchanger in the cooling mode.
A reversing valve is disposed in the cap housing. The reversing valve is moveable within the cap housing between a first position and a second position. The first position of the reversing valve is associated with the heating mode, and the second position of the reversing valve is associated with the cooling mode. In the first position, the first refrigerant port is isolated from the accumulator inlet such that the refrigerant from the compressor flows in the first direction to the passenger compartment heat exchanger first and then through the front end heat exchanger. In the second position, the first refrigerant port is in fluid communication with the accumulator inlet such that the refrigerant from the compressor flows in the second direction to the front end heat exchanger first and then through the passenger compartment heat exchanger. With the first and second positions, the reversing valve is able to accommodate the flow of the refrigerant in either the first or second direction.
Accordingly, the subject invention provides an accumulator assembly for use in a heat pump system. More specifically, this accumulator assembly includes a reversing valve to accommodate the flow of the refrigerant in either the first or second direction.
The accumulator assembly simplifies the plumbing requirements throughout the heat pump system by eliminating the separate componentry of a distinct reversing valve. The plumbing requirements are simplified by reducing the total number of plumbing. connections required. With less plumbing connections required, the likelihood of failure throughout the system is minimized relative to prior art heat pump systems, and overall reliability of the accumulator assembly and heat pump system of the subject invention is enhanced. Without the reversing valve integrated into the accumulator, the overall mass of the heat pump system of the subject invention is decreased relative to the prior art heat pump systems, and the overall packing for this heat pump system is simplified. Finally, the heat pump system of the subject invention may be more easily serviced at one location in the system, i.e., at the accumulator assembly with the reversing valve, rather than at both a reversing valve and at a separate accumulator.
REFERENCES:
patent: 5052193 (1991-10-01), Pettitt et al.
patent: 5201195 (1993-04-01), Gaviak et al.
patent: 5309731 (1994-05-01), Nonoyama et al.
patent: 6189325 (2001-02-01), Pittion et al.
patent: 6192700 (2001-02-01), Runk et al.
patent: 6237351 (2001-05-01), Itoh et al.
patent: 6293123 (2001-09-01), Iritani et al.
patent: 6347528 (2002-02-01), Iritani et al.
Delphi Technologies Inc.
Doerrler William C.
Griffin Patrick M.
Shulman Mark
LandOfFree
Accumulator assembly having a reversing valve and a heat... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Accumulator assembly having a reversing valve and a heat..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Accumulator assembly having a reversing valve and a heat... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3084615